首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The estrogen, 17beta-estradiol, stimulated a profound increase in phosphotyrosine immunostaining of proteins that localized along the site of attachment in avian osteoclasts within 1 min of treatment. By 10 min, this rapidly occurring event had returned to basal levels. Pretreatment with 1 microM herbimycin A, a tyrosine kinase inhibitor, prevented the response. Immunoblotting revealed that Src kinase was one of the phosphorylated intermediates. Src kinase also appeared to translocate to the periphery of the cells during the 1 min 17beta-estradiol treatment and became dispersed by 10 min. Src kinase activity measurements indicated an increase in phosphotransferase activity after the 1 min estradiol treatment; this effect diminished with longer exposures to estrogen. Pretreatment of osteoclasts with 1 microg/ml cytochalasin B, an inhibitor of actin polymerization, delayed the appearance of increased phosphotyrosine immunostaining at attachment sites, possibly through inhibition of Src kinase translocation. These findings demonstrate that estrogen stimulates rapid tyrosine phosphorylation in osteoclasts, a process that involves activation and translocation of Src kinase to the plasma membrane.  相似文献   

2.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia, senile plaques, fibrillary tangles, and a reduction of cholinergic neurons in the septal nucleus of the brain. Nerve growth factor (NGF) and estrogen were studied to observe effects on tyrosine kinase activity in septal neurons. The time course of tyrosine kinase activation and number of cells in which tyrosine kinase was activated were measured. Tissue from embryonic day 16 rats was microdissected and the septal neurons obtained were treated with estrogen (10 M) or NGF (100 ng/mL) at intervals of 1, 2, 3, 4, 5, or 10 min. Immunostaining for phosphotyrosine revealed that cells treated with NGF showed an increase in phosphotyrosine activity within 2-4 min followed by a decline to control levels of enzyme activity. Treatment with estrogen led to an increase in phosphotyrosine immunostaining within 2-3 min followed by a decline to control levels. This time course suggests a mechanism for estrogen activity other than the traditional method involving binding to nuclear receptors followed by protein synthesis.  相似文献   

3.
Previous studies found that epidermal growth factor (EGF) decreased paracellular permeability in gastric mucosa, but the other physiological regulators and the molecular mechanisms mediating these responses remain undefined. We investigated the role of secretin and Src in regulating paracellular permeability because secretin regulates gastric chief cell function and Src mediates events involving the cytoskeletal-membrane interface, respectively. Confluent monolayers were formed from canine gastric epithelial cells in short-term culture on Transwell filter inserts. Resistance was monitored in the presence of secretin with or without specific kinase inhibitors. Tyrosine phosphorylation of Src at Tyr(416) was measured with a site-specific phosphotyrosine antibody. Basolateral, but not apical, secretin at concentrations from 1 to 100 nM dose dependently increased resistance; this response was rapid and sustained over hours. PP2 (10 microM), a selective Src tyrosine kinase inhibitor, but not the inactive isomer PP3, abolished the increase in resistance by secretin but only modestly attenuated apical EGF effects. AG-1478 (100 nM), a specific EGF receptor tyrosine kinase inhibitor, attenuated the resistance increase to EGF but not secretin. Secretin, but not EGF, induced tyrosine phosphorylation of Src at Tyr(416) in a dose-dependent fashion, with the maximal response observed at 1 min. PP2, but not PP3, dramatically inhibited this tyrosine phosphorylation. Secretin increases paracellular resistance in gastric mucosa through a Src-mediated pathway, while the effect of EGF is Src independent. Src appears to mediate the physiological effects of this G(s)-coupled receptor in primary epithelial cells.  相似文献   

4.
The insulin and the endothelin type A (ETA) receptor both can couple into the heterotrimeric G protein alpha(q/11) (Galpha(q/11)), leading to Galpha(q/11) tyrosine phosphorylation, phosphatidylinositol 3-kinase activation, and subsequent stimulation of glucose transport. In this study, we assessed the potential role of Src kinase in ET-1 signaling to glucose transport in 3T3-L1 adipocytes. Src kinase inhibitor PP2 blocked ET-1-induced Src kinase activity, Galpha(q/11) tyrosine phosphorylation, and glucose transport stimulation. To determine which Src family kinase member was involved, we microinjected anti-c-Src, -c-Fyn, or -c-Yes antibody into these cells and found that only anti-c-Yes antibody blocked GLUT4 translocation (70% decreased). Overexpression or microinjection of a dominant negative mutant (K298M) of Src kinase also inhibited ET-1-induced Galpha(q/11) tyrosine phosphorylation and GLUT4 translocation. In co-immunoprecipitation experiments, we found that beta-arrestin 1 associated with the ETA receptor in an agonist-dependent manner and that beta-arrestin 1 recruited Src kinase to a molecular complex that included the ETA receptor. Microinjection of beta-arrestin 1 antibody inhibited ET-1- but not insulin-stimulated GLUT4 translocation. In conclusion, 1) the Src kinase Yes can induce tyrosine phosphorylation of Galpha(q/11) in response to ET-1 stimulation, and 2) beta-arrestin 1 and Src kinase form a molecular complex with the ETA receptor to mediate ET-1 signaling to Galpha(q/11) with subsequent glucose transport stimulation.  相似文献   

5.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

6.
As breast cancer cells develop secondary resistance to estrogen deprivation therapy, they increase their utilization of non-genomic signaling pathways. Our prior work demonstrated that estradiol causes an association of ERα with Shc, Src and the IGF-1-R. In cells developing resistance to estrogen deprivation (surrogate for aromatase inhibition) and to the anti-estrogens tamoxifen, 4-OH-tamoxifen, and fulvestrant, an increased association of ERα with c-Src and the EGF-R occurs. At the same time, there is a translocation of ERα out of the nucleus and into the cytoplasm and cell membrane. Blockade of c-Src with the Src kinase inhibitor, PP-2 causes relocation of ERα into the nucleus. While these changes are not identical in response to each anti-estrogen, ERα binding to the EGF-R is increased in response to 4-OH-tamoxifen when compared with tamoxifen. The changes in EGF-R interactions with ERα impart an enhanced sensitivity of tamoxifen-resistant cells to the inhibitory properties of the specific EGF-R tyrosine kinase inhibitor, AG 1478. However, with long term exposure of tamoxifen-resistant cells to AG 1478, the cells begin to re-grow but can now be inhibited by the IGF-R tyrosine kinase inhibitor, AG 1024. These data suggest that the IGF-R system becomes the predominant signaling mechanism as an adaptive response to the EGF-R inhibitor. Taken together, this information suggests that both the EGF-R and IGF-R pathways can mediate ERα signaling.To further examine the effects of fulvestrant on ERα function, we examined the acute effects of fulvestrant, on non-genomic functionality. Fulvestrant enhanced ERα association with the membrane IGF-1-receptor (IGF-1-R). Using siRNA or expression vectors to knock-down or knock-in selective proteins, we further demonstrated that the ERα/IGF-1-R association is Src-dependent. Fulvestrant rapidly induced IGF-1-R and MAPK phosphorylation. The Src inhibitor PP2 and IGF-1-R inhibitor AG1024 greatly blocked fulvestrant-induced ERα/IGF-1-R interaction leading to a further depletion of total cellular ERα induced by fulvestrant and further enhanced fulvestrant-induced cell growth arrest. More dramatic was the translocation of ERα to the plasma membrane in combination with the IGF-1-R as shown by confocal microscopy. Taken in aggregate, these studies suggest that secondary resistance to hormonal therapy results in usage of both IGF-R and EGF-R for non-genomic signaling.  相似文献   

7.
We have used quail skeletal myotubes expressing a temperature-sensitive allele of the v-src oncogene to address the issue of the homeostasis of sarcomeric myofibrils in differentiated muscle cells. Reactivation of the v-Src tyrosine kinase by shifting the cultures to the permissive temperature leads within minutes to the formation of F-actin-containing bodies (ABs), that originate in the ventral region of the myotubes and increase in number concomitantly with the dismantling of the I-Z-I complex of the sarcomeres. This process is detailed by confocal and electron microscopy. Indirect immunofluorescence reveals that ABs contain muscle-specific protein isoforms associated with the I-Z-I complexes and vinculin, a component of the cytoskeletal network. Anti- phosphotyrosine antibodies label proteins in ABs and Z-discs. Evidence is presented indicating that this phenomenon specifically depends on the persistent activation of v-Src, rather than on a general increase in phosphotyrosine content such as that induced by vanadate. AB formation is prevented by activation of protein kinase C by phorbol ester or by treatment with the kinase inhibitor 2-aminopurine, without any detectable effect on tyrosine phosphorylation. Taken together these findings indicate that phosphorylation of specific target proteins by v- Src, although necessary, is not sufficient per se to induce AB formation. In addition, the signal transduction cascade that culminates in MAP kinase activation and its nuclear translocation is activated both by v-Src and phorbol ester, and is relatively unaffected by 2- aminopurine. These findings imply that both phorbol esters and 2- aminopurine operate, at least in part, at the level of alternative pathways that may diverge upstream of the MAP kinase and are presumably mediating the early effects of v-Src on the differentiated phenotype.  相似文献   

8.
Src kinase regulation by phosphorylation and dephosphorylation   总被引:10,自引:0,他引:10  
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.  相似文献   

9.
Muscarinic receptor-mediated changes in protein tyrosine phosphorylation were examined in differentiated human neuroblastoma SH-SY5Y cells. Treatment of differentiated cells with 1 mM carbachol caused rapid increases in the tyrosine phosphorylation of focal adhesion kinase (FAK), Cas, and paxillin. The src family kinase-selective inhibitor PP1 reduced carbachol-stimulated tyrosine phosphorylation of FAK, Cas, and paxillin by 50 to 75%. In contrast, carbachol-stimulated activation of ERK1/2 was unaffected by PP1. Src family kinase activation by carbachol was further demonstrated by increased carbachol-induced tyrosine phosphorylation of the src-substrate, p120, and tyrosine phosphorylation of the src family kinase activation-associated autophosphorylation site. Site-specific FAK phosphotyrosine antibodies were used to determine that the carbachol-stimulated increase in the autophosphorylation of FAK was unaffected by pretreatment with PP1, whereas the carbachol-stimulated increase in the src family kinase-mediated phosphotyrosine of FAK was completely blocked by pretreatment with PP1. In SH-SY5Y cell lines stably overexpressing Fyn, the phosphotyrosine immunoreactivity of FAK was 625% that of control cells. Thus, muscarinic receptors activate protein tyrosine phosphorylation in differentiated cells, and the tyrosine phosphorylation of FAK, Cas, and paxillin, but not ERK1/2, is mediated by a src family tyrosine kinase activated in response to stimulation of muscarinic receptors.  相似文献   

10.
In this study we report that phorbol 12-myristate 13-acetate (PMA) transiently reduced the level of EGF receptor tyrosine phosphorylation in three pancreatic cancer cell lines (HPAC, SW1990, and UCVA-1) in response to EGF. The effect was maximal at 40-90 min. Pretreatment with the protein kinase C inhibitor GF 109203X reduced the PMA effect. Flow cytometry experiments showed that PMA produced only a slight reduction in the surface expression of EGF-R. The phosphotyrosine phosphatase inhibitor bpV(phen) returned phosphorylation to almost control levels. Moreover, homogenates of PMA treated pancreatic cells reduced the phosphorylation of activated receptor that was immunoprecipitated from A431 epidermoid cells. A combination of orthovanadate and NaF or bpV(phen) inhibited the effect of the homogenates. These results suggest that PMA activates a phosphotyrosine phosphatase activity that reduces the steady-state level of tyrosine phosphorylation of the receptor that is induced by EGF.  相似文献   

11.
The activities of different kinases have been correlated to the phosphorylation of Wiscott-Aldrich syndrome protein (WASP) by studies in multiple cell systems. The purpose of this study was to elucidate the regulatory mechanisms involved in WASP phosphorylation and the resulting sealing ring formation in osteoclasts. The phosphorylation state of WASP and WASP-interacting proteins was determined in osteoclasts treated with osteopontin or expressing either constitutively active or kinase-defective Src by adenovirus-mediated delivery. In vitro kinase analysis of WASP immunoprecipitates exhibited phosphorylation of c-Src, PYK2, WASP, protein-tyrosine phosphatase (PTP)-PEST, and Pro-Ser-Thr phosphatase-interacting protein (PSTPIP). Phosphorylation of these proteins was increased in osteopontin-treated and constitutively active Src-expressing osteoclasts. Pulldown analysis with glutathione S-transferase-fused proline-rich regions of PTP-PEST revealed coprecipitation of WASP, PYK2, c-Src, and PSTPIP proteins with the N-terminal region (amino acids 294-497) of PTP-PEST. Similarly, interaction of the same signaling proteins, as well as PTP-PEST, was observed with glutathione S-transferase-fused proline-rich regions of WASP. Furthermore, osteopontin stimulation or constitutively active Src expression resulted in serine phosphorylation and inhibition of WASP-associated PTP-PEST. The inhibition of PTP-PEST was accompanied by an increase in tyrosine phosphorylation of WASP and other associated signaling proteins. Experiments with an inhibitor to phosphatase and small interference RNA to PTP-PEST confirmed the involvement of PTP-PEST in sealing ring formation and bone resorption. WASP, which is identified in the sealing ring of resorbing osteoclasts, also demonstrates colocalization with c-Src, PYK2, PSTPIP, and PTP-PEST in immunostaining analyses. Our findings suggest that both tyrosine kinase(s) and the tyrosine phosphatase PTP-PEST coordinate the formation of the sealing ring and thus the bone-resorbing function of osteoclasts.  相似文献   

12.
The mechanisms involved in the mechanical loading-induced increase in bone formation remain unclear. In this study, we showed that cyclic strain (CS) (10 min, 1% stretch at 0.25 Hz) stimulated the proliferation of overnight serum-starved ROS 17/2.8 osteoblast-like cells plated on type I collagen-coated silicone membranes. This increase was blocked by MEK inhibitor PD-98059. Signaling events were then assessed 0 min, 30 min, and 4 h after one CS period with Western blotting and coimmunoprecipitation. CS rapidly and time-dependently promoted phosphorylation of both ERK2 at Tyr-187 and focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, leading to the activation of the Ras/Raf/MEK pathway. Cell transfection with FAK mutated at Tyr-397 completely blocked ERK2 Tyr-187 phosphorylation. Quantitative immunofluorescence analysis of phosphotyrosine residues showed an increase in focal adhesion plaque number and size in strained cells. CS also induced both Src-Tyr-418 phosphorylation and Src to FAK association. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 did not prevent CS-induced FAK-Tyr-397 phosphorylation suggesting a Src-independent activation of FAK. CS also activated proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase highly homologous to FAK, at the 402 phosphorylation site and promoted its association to FAK in a time-dependent manner. Mutation of PYK2 at the Tyr-402 site prevented the ERK2 phosphorylation only at 4 h. Intra and extracellular calcium chelators prevented PYK2 activation only at 4 h. In summary, our data showed that osteoblast response to mitogenic CS was mediated by MEK pathway activation. The latter was induced by ERK2 phosphorylation under the control of FAK and PYK2 phosphorylation orchestrated in a time-dependent manner.  相似文献   

13.
Tyrosine kinase activity is known to be important in neuronal growth cone guidance. However, underlying cellular mechanisms are largely unclear. Here, we report how Src family tyrosine kinase activity controls apCAM-mediated growth cone steering by regulating the transmission of traction forces through receptor-cytoskeletal linkages. Increased levels of tyrosine phosphorylation were detected at sites where beads coated with apCAM ligands were physically restrained to induce growth cone steering, but not at unrestrained bead binding sites. Interestingly, the rate and level of phosphotyrosine buildup near restrained beads were decreased by the myosin inhibitor 2,3-butanedione-2-monoxime, suggesting that tension promotes tyrosine kinase activation. While not affecting retrograde F-actin flow rates, genistein and the Src family selective tyrosine kinase inhibitors PP1 and PP2 strongly reduced the growth cone's ability to apply traction forces through apCAM-cytoskeletal linkages, assessed using the restrained bead interaction assay. Furthermore, increased levels of an activated Src family kinase were detected at restrained bead sites during growth cone steering events. Our results suggest a mechanism by which growth cones select pathways by sampling both the molecular nature of the substrate and its ability to withstand the application of traction forces.  相似文献   

14.
Modulation of protein kinase FA /glycogen synthase kinase-3α (kinase FA /GSK-3α) by reversible tyrosine phosphorylation/dephosphorylation was investigated. In addition to genistein, other protein tyrosine kinase (PTK) inhibitors, such as tyrphostin A47 and B42, also could induce tyrosine dephosphorylation and inactivation of kinase FA /GSK-3α in A431 cells, and this process was found to be reversible. Pretreatment of the cells with 100 μM orthovanadate, a protein tyrosine phosphatase (PTP) inhibitor, could diminish significantly the effects of PTK inhibitors on both enzyme activity and phosphotyrosine content of the kinase, suggesting that the PTK inhibitors induced tyrosine dephosphorylation/inactivation of this kinase is mediated by orthovanadate-sensitive PTP(s) in A431 cells. Moreover, the phosphotyrosine moiety of kinase FA /GSK-3α was found to be highly turned over in resting cells. Interestingly, we found that the less active, tyrosine-dephosphorylated form of kinase FA /GSK-3α immunoprecipitated from genistein-treated cells was able to reactivate partially with concomitant rephosphorylation of tyrosine residue in vitro. Taken together, these findings demonstrate that tyrosine phosphorylation and concomitant activation of kinase FA /GSK-3α can be carried out both in vitro and in vivo and an in vivo phosphatase activity may function in antagonism to PTK activation of kinase FA /GSK-3α. J. Cell. Physiol. 171:95–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Protein kinase C-delta (PKC-delta) is involved in growth, differentiation, tumor suppression, and regulation of other cellular processes. PKC-delta activation causes translocation, tyrosine phosphorylation, and serine-threonine kinase activity. However, little is known about the ability of G protein-coupled receptors to activate these processes or the mediators involved. In the present study, we explored the ability of the neurotransmitter/hormone, CCK, to stimulate these changes in PKC-delta and explored the mechanisms. In rat pancreatic acini under basal conditions, PKC-delta is almost exclusively located in cytosol. CCK and TPA stimulated a rapid PKC-delta translocation to membrane and nuclear fractions, which was transient with CCK. CCK stimulated rapid tyrosine phosphorylation of PKC-delta and increased kinase activity. Using tyrosine kinase (B44) and a tyrosine phosphatase inhibitor (orthovanadate), changes in both CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation were shown to correlate with changes in its kinase activity but not translocation. Both PKC-delta tyrosine phosphorylation and activation occur exclusively in particulate fractions. The Src kinase inhibitors, SU6656 and PP2, but not the inactive related compound, PP3, inhibited CCK- and TPA-stimulated PKC-delta tyrosine phosphorylation and activation. In contrast, PP2 also had a lesser effect on CCK- but not TPA-stimulated PKC-delta translocation. CCK stimulated the association of Src kinases with PKC-delta, demonstrated by co-immunoprecipitation. These results demonstrate that CCKA receptor activation results in rapid translocation, tyrosine phosphorylation, and activation of PKC-delta. Stimulation of PKC-delta translocation precedes tyrosine phosphorylation, which is essential for activation to occur. Activation of Src kinases is essential for the tyrosine phosphorylation and kinase activation to occur and plays a partial role in translocation.  相似文献   

16.
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.  相似文献   

17.
We found that engagement of beta2 integrins on human neutrophils triggered both tyrosine and serine phosphorylation of c-Cbl. Pretreatment of the neutrophils with the broad range protein kinase C (PKC) inhibitor GF-109203X blocked the serine but not the tyrosine phosphorylation of c-Cbl. Moreover, the Src kinase inhibitor PP1 prevented the beta2 integrin-induced tyrosine phosphorylation of c-Cbl but not the simultaneous serine phosphorylation. These results indicate that Src family kinases and PKC can separately modulate the properties of c-Cbl. Indeed, tyrosine kinase-dependent phosphorylation of c-Cbl regulated the ubiquitin ligase activity of that protein, whereas PKC-dependent phosphorylation of c-Cbl had no such effect. Instead, c-Cbl that underwent PKC-induced serine phosphorylation associated with the scaffolding and anti-apoptotic 14-3-3 proteins. Consequently, c-Cbl can independently target proteins for degradation or intracellular localization and may initiate an anti-apoptotic signal in neutrophils.  相似文献   

18.
In order to evaluate the role of Src tyrosine kinase in thecal cell steroidogenesis, a pharmacological approach was utilized by treating enriched populations of mouse ovarian theca-interstitial cells in vitro with a direct Src kinase inhibitor, PP2. Inhibition of Src with PP2 increased both basal and forskolin-stimulated androstenedione secretion, and increased cytochrome P450 17-alpha hydroxylase-lyase (CYP17) promoter activity and steady state mRNA. PP2 did not change thecal levels of StAR mRNA. Inhibition of mitogen-activated protein kinase kinase, a downstream regulator of Src activity, using PD98059 also increased forskolin-stimulated secretion of androstenedione above forskolin alone, but had no effect on basal secretion of androstenedione. Src inhibition increased mitogen-activated protein kinase phosphatase-1 protein and decreased phosphorylation of SF-1, which correlated with increased CYP17 promoter activity and mRNA levels. These results implicate Src tyrosine kinase in the regulation of CYP17 and thecal androgen secretion.  相似文献   

19.
Oocyte maturation (OM) in teleosts is under precise hormonal control by progestins and estrogens. We show here that estrogens activate an epidermal growth factor receptor (Egfr) signaling pathway in fully grown, denuded zebrafish (Danio rerio) oocytes through the G protein-coupled estrogen receptor (Gper; also known as GPR30) to maintain oocyte meiotic arrest in a germinal vesicle breakdown (GVBD) bioassay. A GPER-specific antagonist, G-15, increased spontaneous OM, indicating that the inhibitory estrogen actions on OM are mediated through Gper. Estradiol-17beta-bovine serum albumin, which cannot enter oocytes, decreased GVBD, whereas treatment with actinomycin D did not block estrogen's inhibitory effects, suggesting that estrogens act at the cell surface via a nongenomic mechanism to prevent OM. The intracellular tyrosine kinase (Src) inhibitor, PP2, blocked estrogen inhibition of OM. Expression of egfr mRNA and Egfr protein were detected in denuded zebrafish oocytes. The matrix metalloproteinase (MMP) inhibitor, ilomastat, which prevents the release of heparin-bound epidermal growth factor, increased spontaneous OM, whereas the MMP activator, interleukin-1alpha, decreased spontaneous OM. Moreover, inhibitors of EGFR (ErbB1) and extracellular-related kinase 1 and 2 (Erk1/2; official symbol Mapk3/1) increased spontaneous OM. In addition, estradiol-17beta and the GPER agonist, G-1, increased phosphorylation of Erk, and this was abrogated by simultaneous treatment with the EGFR inhibitor. Taken together, these results suggest that estrogens act through Gper to maintain meiotic arrest via an Src kinase-dependent G-protein betagamma subunit signaling pathway involving transactivation of egfr and phosphorylation of Mapk3/1. To our knowledge, this is the first evidence that EGFR signaling in vertebrate oocytes can prevent meiotic progression.  相似文献   

20.
Cyclin dependent kinase 4 is a key regulator of the cell cycle and its activity is frequently deregulated in cancer. The activity of cyclin dependent kinase 4 is controlled by multiple mechanisms, including phosphorylation of tyrosine 17. This site is equivalent to tyrosine 15 of cyclin dependent kinase 1, which undergoes inhibitory phosphorylation by WEE1 and MYT1; however, the kinases that phosphorylate cyclin dependent kinase 4 on tyrosine 17 are still unknown. In the present study, we generated a phosphospecific antibody to the tyrosine 17-phosphorylated form of cyclin dependent kinase 4, and showed that this site is phosphorylated to a low level in asynchronously proliferating HCT116 cells. We purified tyrosine 17 kinases from HeLa cells and found that the Src family non-receptor tyrosine kinase C-YES contributes a large fraction of the tyrosine 17 kinase activity in HeLa lysates. C-YES also phosphorylated cyclin dependent kinase 4 when transfected into HCT116 cells, and treatment of cells with Src family kinase inhibitors blocked the tyrosine 17 phosphorylation of cyclin dependent kinase 4. Taken together, the results obtained in the present study provide the first evidence that Src family kinases, but not WEE1 or MYT1, phosphorylate cyclin dependent kinase 4 on tyrosine 17, and help to resolve how the phosphorylation of this site is regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号