首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary chicken mesenchymal cells from limb buds and vertebral chondrocytes have been used to study the changes that occur in alternative mRNA splicing of fibronectin exon EIIIA during chondrogenesis. The mesenchymal cell phenotype (exon EIIIA included) and chondrocyte phenotype (exon EIIIA excluded) were preserved in culture. Both primary cell types were transfected with an EIIIA minigene and alternative splicing was monitored by S1 protection assay. Differential cell-specific splicing of the reporter was observed. The roles of two regulatory elements, an exon splicing enhancer (ESE) and an exon splicing silencer (ESS) were examined. Both elements were required for EIIIA inclusion into mRNA in mesenchymal cells. Gel mobility shift assays revealed that both chondrocyte- and mesenchymal cell-derived nuclear extracts contained exon EIIIA binding factors, but the RNA binding factors present in the two cell types appeared to be distinct. The ESE and ESS appeared to cooperate in the formation of both cell type-specific complexes. These results suggest a model in which inhibitory factors enriched in chondrocytes compete with positive factors enriched in mesenchymal cells for binding to exon EIIIA, determining whether the exon is included.  相似文献   

2.
The alternative exon EIIIA of the fibronectin gene is included in mRNAs produced in undifferentiated mesenchymal cells but excluded from differentiated chondrocytes. As members of the SR protein family of splicing factors have been demonstrated to be involved in the alternative splicing of other mRNAs, the role of SR proteins in chondrogenesis-associated EIIIA splicing was investigated. SR proteins interacted with chick exon EIIIA sequences that are required for exon inclusion in a gel mobility shift assay. Addition of SR proteins to in vitro splicing reactions increased the rate and extent of exon EIIIA inclusion. Co-transfection studies employing cDNAs encoding individual SR proteins revealed that SRp20 decreased mRNA accumulation in HeLa cells, which make A+ mRNA, apparently by interfering with pre-mRNA splicing. Co-transfection studies also demonstrated that SRp40 increased exon EIIIA inclusion in chondrocytes, but not in HeLa cells, suggesting the importance of cellular context for SR protein activity. Immunoblot analysis did not reveal a relative depletion of SRp40 in chondrocytic cells. Possible mechanisms for regulation of EIIIA splicing in particular, and chondrogenesis associated splicing in general, are discussed.  相似文献   

3.
The fibronectin (FN) gene encodes multiple mRNAs through the process of alternative splicing, and production of certain isoforms is characteristic of a given cell type. Chondrocytes produce FNs that completely lack alternative exon EIIIA, and loss of inclusion of the exon is tightly linked to chondrogenic condensation of mesenchymal cells. The inclusion of a second exon, EIIIB, is high in embryonic cartilage, but declines with age. Multiple exons are omitted to produce the (V + C)-form that is highly specific for cartilage and chondrocytes. A rat chondrosarcoma cell line, RCS, was identified that preserves key features of the cartilage-specific splicing phenotype. RCS cells, which exclude exon EIIIA, and HeLa cells, which include exon EIIIA similar to mesenchymal cells, were used to assess the contribution of intron sequences flanking exon EIIIA to splicing regulation. Deletion of most of the intron downstream of the exon had little effect on splicing in either cell type. However, deletions within upstream intron 32-A reduced inclusion of the alternative exon in both cell types. The sequences involved lie more than 200 nucleotides away from the exon, but could not be localized to a single region by deletion mapping. These intronic sequences contribute to the efficiency of exon EIIIA recognition, but not to cell-type specific regulation. The normally inhibitory factor polypyrimidine tract binding protein promotes exon EIIIA inclusion in a manner that is partially dependent on the regulatory sequences within intron 32-A.  相似文献   

4.
J Zhu  A Mayeda  A R Krainer 《Molecular cell》2001,8(6):1351-1361
SR proteins recognize exonic splicing enhancer (ESE) elements and promote exon use, whereas certain hnRNP proteins bind to exonic splicing silencer (ESS) elements and block exon recognition. We investigated how ESS3 in HIV-1 tat exon 3 blocks splicing promoted by one SR protein (SC35) but not another (SF2/ASF). hnRNP A1 mediates silencing by binding initially to a required high-affinity site in ESS3, which then promotes further hnRNP A1 association with the upstream region of the exon. Both SC35 and SF2/ASF recognize upstream ESE motifs, but only SF2/ASF prevents secondary hnRNP A1 binding, presumably by blocking its cooperative propagation along the exon. The differential antagonism between a negative and two positive regulators exemplifies how inclusion of an alternative exon can be modulated.  相似文献   

5.
6.
We examine here the roles of cellular splicing factors and virus regulatory proteins in coordinately regulating alternative splicing of the tat/rev mRNA of equine infectious anemia virus (EIAV). This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. In the absence of Rev expression, the four-exon mRNA is synthesized exclusively, but when Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. We identify a purine-rich exonic splicing enhancer (ESE) in exon 3 that promotes exon inclusion. Similar to other cellular ESEs that have been identified by other laboratories, the EIAV ESE interacted specifically with SR proteins, a group of serine/arginine-rich splicing factors that function in constitutive and alternative mRNA splicing. Substitution of purines with pyrimidines in the ESE resulted in a switch from exon inclusion to exon skipping in vivo and abolished binding of SR proteins in vitro. Exon skipping was also induced by expression of EIAV Rev. We show that Rev binds to exon 3 RNA in vitro, and while the precise determinants have not been mapped, Rev function in vivo and RNA binding in vitro indicate that the RNA element necessary for Rev responsiveness overlaps or is adjacent to the ESE. We suggest that EIAV Rev promotes exon skipping by interfering with SR protein interactions with RNA or with other splicing factors.  相似文献   

7.
8.
9.
Tran Q  Roesser JR 《Biochemistry》2003,42(4):951-957
Alternative splicing is an important mechanism for the regulation of gene expression. The mammalian calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA is alternatively spliced in a tissue-specific manner, leading to the production of calcitonin mRNA containing exons 1-4 in thyroid C cells and CGRP mRNA containing exons 1-3, 5, and 6 in neurons. The calcitonin-specific fourth exon contains an exonic splice enhancer (ESE) that binds SRp55. We define the RNA binding site of SRp55 in the ESE and demonstrate that base changes that decrease the level of SRp55 binding decrease the level of calcitonin splicing in vitro and calcitonin mRNA production in vivo. Base changes that increase the affinity of SRp55 for the ESE increase the level of calcitonin splicing in vitro and calcitonin mRNA levels in 293 cells. We also observe that SRp55 levels in different cell types correlate with the levels of calcitonin mRNA produced in these cells. Finally, we show that increasing the level of cellular expression of SRp55 stimulates calcitonin mRNA production in vivo. These observations suggest that SRp55 binding to a suboptimal RNA binding site in the calcitonin/CGRP pre-mRNA ESE is required for calcitonin mRNA production. Differential amounts of SRp55 present in different cell types would then control calcitonin/CGRP alternative splicing.  相似文献   

10.
In addition to facilitating the nuclear export of incompletely spliced viral mRNAs, equine infectious anemia virus (EIAV) Rev regulates alternative splicing of the third exon of the tat/rev mRNA. In the presence of Rev, this exon of the bicistronic RNA is skipped in a fraction of the spliced mRNAs. In this report, the cis-acting requirements for exon 3 usage were correlated with sequences necessary for Rev binding and transport of incompletely spliced RNA. The presence of a purine-rich exon splicing enhancer (ESE) was required for exon 3 recognition, and the addition of Rev inhibited exon 3 splicing. Glutathione-S-transferase (GST)-Rev bound to probes containing the ESE, and mutation of GAA repeats to GCA within the ESE inhibited both exon 3 recognition in RNA splicing experiments and GST-Rev binding in vitro. These results suggest that Rev regulates alternative splicing by binding at or near the ESE to block SR protein-ESE interactions. A 57-nucleotide sequence containing the ESE was sufficient to mediate Rev-dependent nuclear export of incompletely spliced RNAs. Rev export activity was significantly inhibited by mutation of the ESE or by trans-complementation with SF2/ASF. These results indicate that the ESE functions as a Rev-responsive element and demonstrate that EIAV Rev mediates exon 3 exclusion through protein-RNA interactions required for efficient export of incompletely spliced viral RNAs.  相似文献   

11.
Fibronectin alternative exon EIIIA is largely included in undifferentiated mesenchymal cells of the developing limb bud, whereas the exon is excluded in differentiated chondrocytes. Inclusion of exon EIIIA in chondrocytic cells is increased by overexpression of SRp40, and, to a lesser extent, SRp75, but not SRp55. RT-PCR analysis using real-time PCR revealed that the levels of the mRNAs for these three proteins did not vary significantly in chick chondrocytes versus mesenchymal cells of the developing limb bud. However, a variant spliced form of SRp40, termed, SRp40LF, is detected preferentially in chondrocytes and in chondrifying mesenchymal cells. Forced overexpression of SRp40 or SRp75, but not SRp55, enhanced chondrogenic differentiation of chick limb mesenchymal cells in a high-density micromass assay. Overexpression of SRp40LF, which produces a truncated form of SRp40, also was strongly pro-chondrogenic. In a HeLa cell-based assay, SRp40LF fails to substitute for SRp40 in mediating an increase in exon EIIIA inclusion, suggesting that the latter event is not essential for the pro-chondrogenic effect. These results demonstrate the ability of these highly conserved splicing factors to modulate chondrogenesis and are consistent with earlier results that implicated exon EIIIA-containing isoforms of fibronectin in formation of chondrogenic condensations.  相似文献   

12.
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two majorcis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3 splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on thecis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.  相似文献   

13.
Members of the miR‐200 family are critical gatekeepers of the epithelial state, restraining expression of pro‐mesenchymal genes that drive epithelial–mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR‐200c and another epithelial‐enriched miRNA, miR‐375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA‐binding protein Quaking (QKI). During EMT, QKI‐5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI‐5 is both necessary and sufficient to direct EMT‐associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial‐derived cancer types. Importantly, several actin cytoskeleton‐associated genes are directly targeted by both QKI and miR‐200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT. These findings demonstrate the existence of a miR‐200/miR‐375/QKI axis that impacts cancer‐associated epithelial cell plasticity through widespread control of alternative splicing.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) pre-mRNA splicing is regulated in order to maintain pools of unspliced and partially spliced viral RNAs as well as the appropriate levels of multiply spliced mRNAs during virus infection. We have previously described an element in tat exon 2 that negatively regulates splicing at the upstream tat 3' splice site 3 (B. A. Amendt, D. Hesslein, L.-J. Chang, and C. M. Stoltzfus, Mol. Cell. Biol. 14:3960-3970, 1994). In this study, we further defined the element to a 20-nucleotide (nt) region which spans the C-terminal vpr and N-terminal tat coding sequences. By analogy with exon splicing enhancer (ESE) elements, we have termed this element an exon splicing silencer (ESS). We show evidence for another negative cis-acting region within tat-rev exon 3 of HIV-1 RNA that has sequence motifs in common with a 20-nt ESS element in tat exon 2. This sequence is juxtaposed to a purine-rich ESE element to form a bipartite element regulating splicing at the upstream tat-rev 3' splice site. Inhibition of the splicing of substrates containing the ESS element in tat exon 2 occurs at an early stage of spliceosome assembly. The inhibition of splicing mediated by the ESS can be specifically abrogated by the addition of competitor RNA. Our results suggest that HIV-1 RNA splicing is regulated by cellular factors that bind to positive and negative cis elements in tat exon 2 and tat-rev exon 3.  相似文献   

15.
16.
17.
Chondrogenesis, the differentiation of mesenchyme into cartilage, results in a change in composition of the extracellular matrix. The cartilage matrix contains several unique components, including type II collagen and chondroitin sulfate proteoglycan; it also contains fibronectin, a glycoprotein that mediates the interaction of cells with their matrix. We show that chick cartilage fibronectin mRNA contains an unusual pattern of alternatively spliced exons. Specifically, it contains exon IIIB but does not contain exon IIIA whereas fibronectin mRNA from mesenchyme contains both exons IIIB and IIIA. Thus the splicing pattern of the fibronectin mRNA must change from B+A+ to B+A- during chondrogenesis. Most fibronectin mRNA in other mesenchymal tissues contains exon IIIA but little exon IIIB (B-A+). Culturing of chondrocytes (cartilage-producing cells) results in loss of exon IIIB from fibronectin mRNA (B-A-). Manipulation of culture conditions to produce more adhesive chondrocytes (treatment with hyaluronidase, transformation with Rous sarcoma virus, and treatment with retinoic acid) increases the amount of fibronectin mRNA containing exon IIIA. These results suggest that exon IIIB may mediate the interactions of chondrocytes with the unique components of the cartilage matrix and exon IIIA may play a role in chondrocyte adhesion.  相似文献   

18.
The removal of the second intron in the HIV-1 rev/tat pre-mRNAs, which involves the joining of splice site SD4 to SA7, is inhibited by hnRNP A1 by a mechanism that requires the intronic splicing silencer (ISS) and the exon splicing silencer (ESS3). In this study, we have determined the RNA secondary structure and the hnRNP A1 binding sites within the 3' splice site region by phylogenetic comparison and chemical/enzymatic probing. A biochemical characterization of the RNA/protein complexes demonstrates that hnRNP A1 binds specifically to primarily three sites, the ISS, a novel UAG motif in the exon splicing enhancer (ESE) and the ESS3 element, which are all situated in experimentally supported stem loop structures. A mutational analysis of the ISS region revealed that the core hnRNP A1 binding site directly overlaps with a major branchpoint used in splicing to SA7, thereby providing a direct explanation for the inhibition of U2 snRNP association with the pre-mRNA by hnRNP A1. Binding of hnRNP A1 to the ISS core site is inhibited by RNA structure but strongly stimulated by the exonic silencer, ESS3. Moreover, the ISS also stimulate binding of hnRNP A1 to the exonic splicing regulators ESS3 and the ESE. Our results suggest a model where a network is formed between hnRNP A1 molecules situated at discrete sites in the intron and exon and that these interactions preclude the recognition of essential splicing signals including the branch point.  相似文献   

19.
Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3' splice site utilization from an early 3' splice site at nucleotide (nt) 3225 to a late-specific 3' splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3' splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3' splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3' splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3' splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3' splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3' splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3' splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3' splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3' splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3' splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号