首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human bone marrow stromal cells (hBMSC) are pluripotent cells that have the ability to differentiate into bone, cartilage, hematopoietic-supportive stroma, and adipocytes in a process modulated by dexamethasone (DEX). To characterize changes in hBMSC in response to DEX, we carried out differential display experiments using hBMSC cultured for 1 week in the presence or absence of 10(-8) M DEX. When RNA from these cells was used for differential display, numerous cDNA bands were identified that were up-regulated and down-regulated by DEX. The cDNA bands were reamplified by PCR and directly used to screen an hBMSC cDNA library. Seven clones were isolated and characterized by DNA sequencing and found to encode the following genes: transforming growth factor-beta-induced gene product ((beta)ig-h3), calphobindin II, cytosolic thyroid-binding protein, 22-kDA smooth muscle protein (SM22), and the extracellular matrix proteins osteonectin/SPARC, type III collagen, and fibronectin. To confirm that these genes were regulated by DEX, the cells were treated continuously with this hormone for periods ranging from 2 to 30 days, and steady-state mRNA levels were measured by Northern blot analysis. All genes showed some level of regulation by DEX. The most profound regulation by DEX was observed in the (beta)ig-h3 gene, which showed a relative 10-fold decrease in mRNA levels after 6 days of treatment. Interestingly, (beta)ig-h3 expression was not altered by DEX in fibroblasts from other human tissues, including thymus stromal fibroblasts, spleen stromal fibroblasts, and foreskin fibroblasts. In summary, differential display of DEX-treated hBMSC revealed unique patterns of gene expression and has provided new information about phenotypic changes that accompany the differentiation of hBMSC toward osteogenesis. J. Cell. Biochem. 76:231-243, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

2.
Using an in vitro osteogenic culture system, we carried out a restriction fragment differential display (RFDD-PCR) to identify genes expressed by these cells in their undifferentiated stage and not expressed, or expressed at a lower level, in a closely related but distinct cell type: bone marrow stromal cells (BMSC)-derived osteoblasts (BDO). Forty-seven candidate regulated genes, selected by RFDD, were analyzed by RT-PCR analysis in three cell clones and in primary cultures from seven different donors. A subset of three genes were confirmed as upregulated in BMSC relative to BDO in every primary culture and cloned population examined: betaIG-h3, IGFbp3, and LOXL2. Their differential expression was confirmed by Northern analysis and the corresponding proteins were detected by immunolocalization in BMSC.  相似文献   

3.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Adenovirus-mediated BMP2 expression in human bone marrow stromal cells   总被引:13,自引:0,他引:13  
Recombinant adenoviral vectors have been shown to be potential new tools for a variety of musculoskeletal defects. Much emphasis in the field of orthopedic research has been placed on developing systems for the production of bone. This study aims to determine the necessary conditions for sustained production of high levels of active bone morphogenetic protein 2 (BMP2) using a recombinant adenovirus type 5 (Ad5BMP2) capable of eliciting BMP2 synthesis upon infection and to evaluate the consequences for osteoprogenitor cells. The results indicate that high levels (144 ng/ml) of BMP2 can be produced in non-osteoprogenitor cells (A549 cell line) by this method and the resultant protein appears to be three times more biologically active than the recombinant protein. Surprisingly, similar levels of BMP2 expression could not be achieved after transduction with Ad5BMP2 of either human bone marrow stromal cells or the mouse bone marrow stromal cell line W20-17. However, human bone marrow stromal cells cultured with 1 microM dexamethasone for four days, or further stimulated to become osteoblast-like cells with 50 microg/ml ascorbic acid, produced high levels of BMP2 upon Ad5BMP2 infection as compared to the undifferentiated cells. The increased production of BMP2 in adenovirus transduced cells following exposure to 1 microM dexamethasone was reduced if the cells were not given 50 microg/ml ascorbic acid. When bone marrow stromal cells were allowed to become confluent in culture prior to differentiation, BMP2 production in response to Ad5BMP2 infection was lost entirely. Furthermore, the increase in BMP2 synthesis seen during differentiation was greatly decreased when Ad5BMP2 was administered prior to dexamethasone treatment. In short, the efficiency of adenovirus mediated expression of BMP2 in bone marrow stromal cells appears to be dependent on the differentiation state of these cells.  相似文献   

5.
Adipocytes and osteoblasts have common origins from fibroblastic stem cells. Consequently, modulation of the processes of adipogenesis and osteogenesis has implications for the possible treatment of metabolic bone diseases, such as osteoporosis, in which medullary fat accumulates and trabecular bone volume decreases. It is likely that the balance between these two systems is affected by particular endogenous growth factors which are known to affect bone metabolism. We have therefore investigated the effects of transforming growth factor beta (TGFbeta), basic fibroblast growth factor (bFGF) and dexamethasone (Dex) on cultured human bone marrow (HBM) fibroblastic cells to observe the effects on adipogenesis and osteogenesis. In the absence of fetal calf serum (FCS), TGFbeta caused a dose-dependent increase in cell growth and alkaline phosphatase activity (AP); however, in the presence of FCS growth was inhibited at high concentrations and AP unaffected. TGFbeta increased matrix proteoglycan and collagen synthesis. bFGF inhibited AP and increased colony number and size, while Dex treatment increased AP activity and colony number, and both factors in combination resulted in an additive increase in growth. Dex-induced adipocyte formation was accelerated but not increased by bFGF. A significant inhibition of adipogenesis by TGFbeta was observed within 7 days. These results demonstrate the importance of biological factors known to be involved in bone remodelling in the regulation of osteogenesis and adipogenesis.  相似文献   

6.
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated.  相似文献   

7.
Our goal is to examine the synthesis and deposition of corneal glycosaminoglycans (GAGs) in response to a wound created by the insertion of porous discs into stromal interlamellar pockets. The disc and the surrounding stromal tissue were assayed and compared to contralateral control stroma and to sham operated corneas at 14,42, and 84 days. The tissue and/or discs were removed and labeled with 35S-sulfate for 18 h; GAGs were extracted with 4 M guanidine–HCl. Extracts were chromatographed on Q-Sepharose columns, bound proteoglycans were eluted with a linear salt gradient, and radioactive fractions were analyzed. Total GAG content was determined colorimetrically, using dimethylmethylene blue. Specific GAGs were determined using enzymatic digestion with selective polysaccharide lyases and protein cores were examined using SDS–PAGE. The nonbound fractions from the chromatography were assayed for TGF-β using Western blot analysis and for hyaluronic acid using an 125I-radiometric assay. Specific GAGs were localized 42 days after the disc had been implanted in the stroma. The placement of the discs into the stroma resulted in a decrease in the total amount of GAG. However, the ratio of dermatan-chondroitin sulfate and heparan sulfate to keratan sulfate increased in the surrounding tissue and disc. Hyaluronic acid was elevated at day 14 in the surrounding tissue, and not until day 84 in the disc. Western blot analysis of surrounding tissue extracts revealed forms of TGF-β that migrated with an apparent molecular mass of 63 and 43 kDa. The results indicate that the insertion of discs into interlamellar pockets causes changes in the sulfation and proportion of the glycosaminoglycans in the surrounding tissue and the disc. These changes are coincident with the appearance of TGF-β. After 84 days, the population of glycosaminoglycans in the disc begins to resemble the surrounding stroma. This model will allow us to examine further the synthesis and deposition of proteins following an extensive wound in which cells must migrate to the wound site and then undergo extensive remodeling. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Adipose cells have been recognized as an integral component of the bone marrow hematopoietic microenvironment in vivo and as an essential cell type required for in vitro maintenance of stem cells. Four stromal cell lines obtained from the adherent cell population of murine bone marrow cultures have been enriched and purified by multiple trypsinizations. We noted that these cell lines exhibited an accumulation of vacuoles of lipid, the extent of which varied be-tween cell lines in response to a change from medium containing 10% fetal calf serum to medium containing 20% horse serum. The lipid was lost when the cell lines were transferred back into the medium supplemented with fetal calf serum. In light of the reported lipogenic and antilipolytic effects of insulin on fibroblasts and adipocytes, we investigated the ability of insulin to induce adipocyte transformation of these bone marrow stromal cell populations. Three cell lines were exposed to bovine insulin at concentrations ranging from 10?9 to 10?6 M. All three cell lines responded to the insulin by accumulating lipid, but the extent of accumulation and the insulin concentration at which maximum lipid content was attained were population specific. One cell line (MC1) responded fully at physiological levels of insulin (10?9 M), whereas the other two showed lipid accumulation only at pharmacological concentrations. The initial growth of MC1 was inhibited in the presence of 10?9 M insulin which is compatible with the observed differentiation to adipocytes. The growth of MC3 was unaltered in the presence of physiological concentrations of insulin, whereas that of MC4 was accelerated. Grafts of organ cultures of the cell lines under the kidney capsule of syngeneic mice developed specific characteristics rep-resentative of the different cell lines. In particular, the majority of the grafts of MC1 consisted primarily of fat cells which were not observed in the grafts of MC3 and MC4. These data strongly suggest that these cell lines comprise cells with different potentialities and that the MC1 line represents a preadipocyte stromal cell of bone marrow.  相似文献   

9.
Dexamethasone is capable of directing osteoblastic differentiation of bone marrow stromal cells (BMSCs) in vitro, but its effects are not lineage-specific, and sustained exposure has been shown to down-regulate collagen synthesis and induce maturation of an adipocyte subpopulation within BMSC cultures. Such side effects might be reduced if dexamethasone is applied in a regimented manner, but the discrete steps in osteoblastic maturation that are stimulated by dexamethasone are not known. To examine this, dexamethasone was added to medium to initiate differentiation of rat BMSCs cultures and then removed after a varying number of days. Cell layers were analyzed for cell number, rate of collagen synthesis, expression of osteocalcin (OC), bone sialoprotein (BSP) and lipoprotein lipase (LpL), and matrix mineralization. Withdrawal of dexamethasone at 3 and 10 days was found to enhance cell number relative to continuous exposure, but did not affect to decrease collagen synthesis slightly. Late markers of osteoblastic differentiation, BSP expression and matrix mineralization, were also sensitive to dexamethasone and increased systematically with exposure while LpL systematically decreased. These results indicate that dexamethasone acts at both early and late stages to direct proliferative osteoprogenitor cells toward terminal maturation.  相似文献   

10.
Human bone marrow stromal cells (hMSCs) have the potential to differentiate into osteoblasts; there are age‐related decreases in their proliferation and differentiation to osteoblasts. Parathyroid hormone (PTH), when applied intermittently in vivo, has osteoanabolic effects in a variety of systems. In this study, we compared PTH signaling and osteoanabolic effects in hMSCs from young and old subjects. There were age‐related decreases in expression of PTH/PTHrP receptor type 1 (PTHR1) gene (P = 0.049, n = 19) and in PTH activation of CREB (P = 0.029, n = 7) and PTH stabilization of β‐catenin (P = 0.018, n = 7). Three human PTH peptides, PTH1‐34, PTH1‐31C (Ostabolin‐C, Leu27, Cyclo[Glu22‐Lys26]‐hPTH1‐31), and PTH1‐84 (10 nm ), stimulated osteoblast differentiation with hMSCs. Treatment with PTH1‐34 resulted in a significant 67% increase in alkaline phosphatase activity in hMSCs obtained from younger subjects (<50 years old, n = 5), compared with an 18% increase in hMSCs from elders (>55 years old, n = 7). Both knockdown of CREB and treatment with a protein kinase A inhibitor H‐89 blocked PTH stimulation of osteoblast differentiation in hMSCs from young subjects. The PTH peptides significantly stimulated proliferation of hMSCs. Treatment with PTH1‐34 resulted in an average of twice as many cells in cultures of hMSCs from young subjects (n = 4), but had no effect with hMSCs from elders (n = 7). Upregulation of PTHR1 by 24‐h pretreatment with 100 nm dexamethasone rescued PTH stimulation of proliferation in hMSCS from elders. In conclusion, age‐related intrinsic alterations in signaling responses to osteoanabolic agents like PTH may contribute to cellular and tissue aging of the human skeleton.  相似文献   

11.
12.
Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long‐term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine‐specific phospholipase C (PC‐PLC) and levels of integrin β4, caveolin‐1 and ROS with BMSC senescence. The activity of PC‐PLC and levels of integrin β4, caveolin‐1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC‐PLC activity with D609 significantly decreased the number of senescence‐associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin β4, caveolin‐1 and ROS. The data suggest that PC‐PLC is involved in senescence of BMSCs, and its function is associated with integrin β4, caveolin‐1 and ROS. J. Cell. Biochem. 108: 519–528, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Osteoblasts are target cells for glucocorticoids and calcitriol, and their phenotype is greatly modified by these hormones. We investigated the effect of continuous or discontinuous hormonal exposure to osteoblasts derived from rat bone marrow stromal cells in long-term subcultures. Stromal cells were grown in primoculture in presence of dexamethasone (dex), but in following subcultures, dex and/or calcitriol were added just after seeding or after a 7-day hormone-free period. Cell proliferation, alkaline phosphatase (ALP) histochemical staining, and enzymatic bioactivity measurement, osteocalcin (OC), ALP and bone sialoprotein (BSP) mRNA expression were used to study the differential effect on osteoblastic phenotype of various conditions of treatment by dex and calcitriol. In primoculture, the osteoblastic differentiation was confirmed by the formation of calcified nodules and by strong expression of ALP, OC, and BSP mRNAs. In subcultures, proliferation of stromal cells was stimulated by dex and inhibited by calcitriol and by both hormones. Cell proliferation was not modified by hormonal lack during 7 days. Continuous hormonal treatment by dex strongly enhanced OC and BSP mRNAs, but apparently did not modified ALP mRNAs expression. Continuous treatment by calcitriol decreased ALP and the dex-induced BSP expression and stimulated the OC mRNAs level, strongly when associated with dex. The population of ALP+ cells and ALP bioactivity were strongly increased by dex, whereas calcitriol or both hormones decreased them. When the subcultures were undergone without hormonal treatment during 7 days, all osteogenic mRNAs strongly decreased even after hormonal recovery. Dex, calcitriol, and both hormones inhibited ALP mRNAs. OC messengers were only weakly detectable with both hormones. ALP+ cell population and ALP bioactivity were decreased after 14 days of hormonal treatment recovery. These results support that continuous presence of glucocorticoids appears as a major key for the permanent expression of the osteoblastic phenotype that is inhibited by calcitriol, in the rat bone marrow.  相似文献   

14.
Cytokines are known to increase the production of prostaglandins by human decidual cells, but negative regulators have not been identified. We have examined the effects of dexamethasone and progesterone on prostaglandin (PG) E2 synthesis by cultured human first trimester decidual cells. The numbers of cyclooxygenase (COX) enzyme positive cells were visualised by immunocytochemistry, using antibodies specific for COX-1 and COX-2. Interleukin-1β stimulated the production of prostaglandins E2 and F2α dose-dependently, and this was associated with increased numbers of COX-2 positive cells. Progesterone (10−7−10−6 M) and dexamethasone (10−7−10−6 M) inhibited basal and interleukin-1β-stimulated prostaglandin production, and decreased the numbers of COX-2 positive cells. Neither interleukin-1β nor the steroids affected numbers of COX-1 positive cells. COX-2 seems to be the main enzyme controlling the synthesis of PGE2 by human decidual cells, and may be negatively regulated by progesterone.  相似文献   

15.
Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor‐β3‐mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)‐urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF‐derived stem cells (AFSCs), the newly identified AF tissue‐specific stem cells. As predicted, the expression of collagen‐I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen‐II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen‐I, collagen‐II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering.  相似文献   

16.
hASCs [human ASCs (adipose derived stromal cells)] proliferate more rapidly in the presence of basic FGF-2 (fibroblast growth factor-2) and Dex (dexamethasone). We have examined the effects of expanding hASCs in media containing these two factors on their chondrogenic differentiation potential. Results show that the addition of FGF-2 and Dex to the expansion medium does not remarkably alter the chondrogenic potential of the cells induced by BMP-6 (bone morphogenetic protein-6), based on chondrogenic gene expression, sGAG (sulfated glycosaminoglycan) accumulation and immunohistochemical observation. This is in direct contrast to previously reported promotion of the osteogenic and adipogenic potential of hASCs by these two factors. Therefore, an expansion medium containing FGF-2, with or without Dex, is appropriate for the fast expansion of hASCs without compromising chondrogenic potential.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号