首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M protein is an important virulence determinant in Streptococcus pyogenes, but the amounts of M protein in various strains of the species remain to be elucidated. To assess the amount of M protein in strains of each emm genotype, dot blot analysis was performed on 141 clinically isolated strains. Among the cell membrane-associated proteins, M protein was present in greater quantities in the emm1, 3, and 6 strains than in the other emm strains. In addition three strains, one each of the emm1, 3, and 6 types, showed prolific M protein production (M protein-high producers). These three emm genotypes are frequently isolated in clinical practice. Sequencing of the csrRS gene, one of the two-component signal transduction systems implicated in virulence, was performed on 25 strains bearing different amounts of M protein. CsrS mutations, in contrast to CsrR protein, were detected in 11 strains. The M protein-high producer strain of emm1 type carried two amino acid substitutions, whereas the other three emm1 strains carried only one substitution each. The M protein-high producer expressed its emm gene more strongly than the corresponding M protein-low producer did according to TaqMan RT-PCR. These observations suggest that the accumulation of amino acid substitutions in CsrS protein may contribute, at least in part, to the large amount of M protein production seen in several emm genotypes.  相似文献   

2.
This is the first study to quantify genomic sequence variation of the major histocompatibility complex (MHC) in wild and ornamental guppies, Poecilia reticulata. We sequenced 196-219 bp of exon 2 MHC class IIB (DAB) in 56 wild Trinidadian guppies and 14 ornamental strain guppies. Each of two natural populations possessed high allelic richness (15-16 alleles), whereas only three or fewer DAB alleles were amplified from ornamental guppies. The disparity in allelic richness between wild and ornamental fish cannot be fully explained by fixation of alleles by inbreeding, nor by the presence of non-amplified sequences (ie null alleles). Rather, we suggest that the same allele is fixed at duplicated MHC DAB loci owing to gene conversion. Alternatively, the number of loci in the ornamental strains has contracted during >100 generations in captivity, a hypothesis consistent with the accordion model of MHC evolution. We furthermore analysed the substitution patterns by making pairwise comparisons of sequence variation at the putative peptide binding region (PBR). The rate of non-synonymous substitutions (dN) only marginally exceeded synonymous substitutions (dS) in PBR codons. Highly diverged sequences showed no evidence for diversifying selection, possibly because synonymous substitutions have accumulated since their divergence. Also, the substitution pattern of similar alleles did not show evidence for diversifying selection, plausibly because advantageous non-synonymous substitutions have not yet accumulated. Intermediately diverged sequences showed the highest relative rate of non-synonymous substitutions, with dN/dS>14 in some pairwise comparisons. Consequently, a curvilinear relationship was observed between the dN/dS ratio and the level of sequence divergence.  相似文献   

3.
Nucleotide sequences of the genome RNA encoding capsid protein VP1 (918 nucleotides) of 18 enterovirus 70 (EV70) isolates collected from various parts of the world in 1971 to 1981 were determined, and nucleotide substitutions among them were studied. The genetic distances between isolates were calculated by the pairwise comparison of nucleotide difference. Regression analysis of the genetic distances against time of isolation of the strains showed that the synonymous substitution rate was very high at 21.53 x 10(-3) substitution per nucleotide per year, while the nonsynonymous rate was extremely low at 0.32 x 10(-3) substitution per nucleotide per year. The rate estimated by the average value of synonymous and nonsynonymous substitutions (W.-H. Li, C.-C. Wu, and C.-C. Luo, Mol. Biol. Evol. 2:150-174, 1985) was 5.00 x 10(-3) substitution per nucleotide per year. Taking the average value of synonymous and nonsynonymous substitutions as genetic distances between isolates, the phylogenetic tree was inferred by the unweighted pairwise grouping method of arithmetic average and by the neighbor-joining method. The tree indicated that the virus had evolved from one focal place, and the time of emergence was estimated to be August 1967 +/- 15 months, 2 years before first recognition of the pandemic of acute hemorrhagic conjunctivitis. By superimposing every nucleotide substitution on the branches of the phylogenetic tree, we analyzed nucleotide substitution patterns of EV70 genome RNA. In synonymous substitutions, the proportion of transitions, i.e., C<==>U and G<==>A, was found to be extremely frequent in comparison with that reported on other viruses or pseudogenes. In addition, parallel substitutions (independent substitutions at the same nucleotide position on different branches, i.e., different isolates, of the tree) were frequently found in both synonymous and nonsynonymous substitutions. These frequent parallel substitutions and the low nonsynonymous substitution rate despite the very high synonymous substitution rate described above imply a strong restriction on nonsynonymous substitution sites of VP1, probably due to the requirement for maintaining the rigid icosahedral conformation of the virus.  相似文献   

4.
Nucleotide sequence of mouse Tcp-1a cDNA   总被引:3,自引:0,他引:3  
We have isolated complete cDNA clones encoding the mouse t-complex polypeptides 1A and 1B (TCP-1A and TCP-1B) from t-haplotype and wild-type (wt) mice, respectively. The complete nucleotide (nt) sequence of the Tcp-1a cDNA was determined. The Tcp-1a cDNA has an open reading frame (ORF) encoding a 60-kDa protein of 556 amino acids (aa). A comparison of nt sequences between the Tcp-1a and Tcp-1b cDNAs revealed that the 1786-bp regions upstream from their polyadenylation signals differed by 17 substitutions and that Tcp-1a had different polyadenylation sites from Tcp-1b. In these ORFs, 15 bp were substituted between the two alleles, occurring in 14 codons and resulting in eleven single-aa substitutions. Among these 15 substitutions, twelve were nonsynonymous (aa change) and three were synonymous (no aa change). The aa substitution in TCP-1 has occurred at least 20 times faster between t-haplotype and wt than between mouse and human or mouse and Drosophila.  相似文献   

5.
We have used analysis of variance to partition the variation in synonymous and amino acid substitution rates between three effects (gene, lineage, and a gene-by-lineage interaction) in mammalian nuclear and mitochondrial genes. We find that gene effects are stronger for amino acid substitution rates than for synonymous substitution rates and that lineage effects are stronger for synonymous substitution rates than for amino acid substitution rates. Gene-by-lineage interactions, equivalent to overdispersion corrected for lineage effects, are found in amino acid substitutions but not in synonymous substitutions. The variance in the ratio of amino acid and synonymous substitution rates is dominated by gene effects, but there is also a significant gene-by-lineage interaction.  相似文献   

6.
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.  相似文献   

7.
A phylogenetic analysis was conducted on 34 alleles of 2.5 kb sized stearoyl-ACP desaturase II (sad2), obtained from 30 accessions of cultivated and pale flax (Linum spp.), to elucidate the history of flax domestication. The analysis supports a single domestication origin for extant cultivated flax. The phylogenetic evidence indicates that flax was first domesticated for oil, rather than fibre. The genetic diversity of the sad2 locus in cultivated flax is low when compared to that of the pale flax assayed. An absolute archaeological date could be applied to the synonymous substitution rate of sad2 in cultivated flax, yielding a high estimate of 1.60–1.71×10−7 substitutions/site/year. The occurrence of nonsynonymous substitutions at conserved positions of the third exon in alleles from cultivated flax suggests that the locus may have been subjected to an artificial selection pressure. The elevated synonymous substitution rate is also compatible with a population expansion of flax since domestication, followed by a population decline in historic times. These findings provide new insight into flax domestication and are significant for the continuous exploration of the flax germplasm for utilization.  相似文献   

8.
The spatial distribution of synonymous substitutions in enterobacterial genes is investigated. It is shown that synonymous substitutions are significantly clustered in such a way that a synonymous substitution in one codon elevates the rate of synonymous substitution in an adjacent codon by about 10%. The level of clustering does not appear to be related to the level of gene expression, and it is restricted to a range of two or three codons. There are at least three possible explanations: (1) sequence-directed mutagenesis, (2) recombination, and (3) selection.  相似文献   

9.
Genes sequences from Escherichia coli, Salmonella typhimurium, and other members of the Enterobacteriaceae show a negative correlation between the degree of synonymous-codon usage bias and the rate of nucleotide substitution at synonymous sites. In particular, very highly expressed genes have very biased codon usage and accumulate synonymous substitutions very slowly. In contrast, there is little correlation between the degree of codon bias and the rate of protein evolution. It is concluded that both the rate of synonymous substitution and the degree of codon usage bias largely reflect the intensity of selection at the translational level. Because of the high variability among genes in rates of synonymous substitution, separate molecular clocks of synonymous substitution might be required for different genes.   相似文献   

10.
Hughes AL  French JO 《Gene》2007,387(1-2):31-37
Patterns of nucleotide substitution at orthologous loci were examined between three genomes of Ehrlichia ruminantium, the causative agent of heartwater disease of ruminants. The most recent common ancestor of two genomes (Erwe and Erwo) belonging to the Welgevonden strain was estimated to have occurred 26,500-57,000 years ago, while the most recent common ancestor of these two genomes and the Erga genome (Gardel strain) was estimated to have occurred 2.1-4.7 million years ago. The search for genes showing extremely high values of the number of synonymous substitutions per site was used to identify genes involved in past homologous recombination. The most striking case involved the map1 gene, encoding major antigenic protein-1; evidence for homologous recombination is consistent with previous phylogenetic analysis of map1 alleles. At this and certain other loci, homologous recombination may have contributed to the evolution of host-pathogen interactions. In addition, comparison of the patterns of synonymous and nonsynonymous substitution provided evidence for positive selection favoring a high level of amino acid change between the Welgevonden and Gardel strains at a locus of unknown function (designated Erum4340 in the Erwo genome).  相似文献   

11.
Evolutionary analysis of S-RNase genes from Rosaceae species   总被引:7,自引:0,他引:7  
Eight new cDNA sequences for S-RNases were cloned and analysed from almond (Prunus dulcis) cultivars of European origin, and compared to published sequences from other Rosaceae species. Insertions/deletions of 10-20 amino acid residues were detected in the RC4 and C5 domains of S-RNases from almond and sweet cherry. The S-RNases of the Prunus species and those of the genera Malus and Pyrus formed two distinct groups on phylogenetic analysis. Nucleotide substitutions were analysed in the S-RNase genes of these species. The S-genes of almond and sweet cherry have a lower Ka/Ks value than those of apple, pear and wild apple do. The fact that there is no fixed difference between the S-RNase genes of almond and sweet cherry, or between apple and pear, suggests that nucleotide substitutions only introduce transient polymorphism into the two groups, and rarely became fixed and contribute to divergence. Through the comparative study of 17 S-RNase genes from the genus Prunus and 18 from the genera Malus and Pyrus, some fixed nucleotide differences between the two groups were identified. These differences do not appear to be the result of selection for adaptive mutations, since the number of replacement substitutions is not significantly greater than the number of synonymous substitutions. S-RNase genes of almond and sweet cherry, and of apple and pear, showed little heterogeneity in nucleotide substitution rates. However, heterogeneity was observed between the two groups of S-alleles, with the Prunus alleles exhibiting a lower rate of non-synonymous substitutions than alleles from Malus and Pyrus. The evolutionary relationships between these species are discussed.  相似文献   

12.
Evolution of the Sry genes   总被引:4,自引:3,他引:1  
Existing DNA sequence data on the Sry gene, the mammalian sex- determining locus in the Y chromosome, were analyzed for primates, rodents, and bovids. In all three taxonomic groups, the terminal sequences evolved faster than the HMG (high mobility group) boxes, and this applies both to synonymous (Ks) and nonsynonymous (Ka) nucleotide substitutions. Similar intragenic correlation between synonymous and nonsynonymous substitution rates was not found either in other mammalian genes that contain a conservative box (Sox, Msx) or in the MADS-box genes of plants. The rate of nonsynonymous substitutions exceeds significantly that of synonymous substitutions in the terminal Sry sequences of apes. We did not find good support for the hypothesis that the high evolutionary rate of Sry would be associated with a promiscuous mating system.   相似文献   

13.
The neonatal Fc receptor (FcRn) is a key receptor involved in the transcytosis of IgG across the maternal-fetal barrier. The level of IgG varies considerably among newborn infants. Since other Fc gamma receptors show single nucleotide functional variants, we determined whether common variant alleles exist for the FcRn. Direct sequence analysis was performed on PCR-amplified complementary DNA (cDNA) isolated from ten placental mRNAs (20 alleles examined). Two synonymous nucleotide polymorphisms were detected from the same source. A G251T and C707T substitution, reflecting amino acid positions Pro19 and Arg171 of the mature polypeptide, did not alter the amino acid encoded. No other nucleotide substitutions or sequence variations were observed. Thus, the variation in IgG transport is not due to common variant alleles among the human population. Due to the limited number of samples tested (n=20), low-frequency alleles would go undetected by chance alone when q has a frequency < or = 0.14. It is unlikely that low-frequency variant alleles, if present, are responsible for the major variation seen in the transcytosis of IgG.  相似文献   

14.
Examination of polymorphisms in the Plasmodium falciparum gene for falcipain 2 revealed that this gene is one of two paralogs separated by 10.8 kb in chromosome 11. We designate the annotated gene denoted chr11.gen_424 as encoding falcipain 2A and the annotated gene denoted chr11.gen_427 as encoding falcipain 2B. The paralogs are 96% identical at the nucleotide level and 93% identical at the amino acid level. The consensus sequences differ in 31/309 synonymous sites and 45/1140 nonsynonymous sites, including three amino acid replacements (V393I, A400P, and Q414E) that are near the catalytic site and that may affect substrate affinity or specificity. In six reference isolates, among 36 synonymous sites and 46 nonsynonymous sites that are polymorphic in the gene for falcipain 2A, falcipain 2B, or both, significant spatial clustering is observed. All but one of the polymorphisms appear to result from gene conversion between the paralogs. The estimated rate of gene conversion between the paralogs may be as many as 1,400 to 1,700 times greater than the rate of mutation. Owing to gene conversion, one of the falcipain 2A alleles is more similar to the falcipain 2B alleles than it is to other falcipain 2A alleles. Divergence among the synonymous sites suggests that the paralogous genes last shared a common ancestor 15.2 MYA, with a range of 8.8 to 20.6 MYA. During this period, the paralogs have acquired 0.10 synonymous substitutions per synonymous site in the coding region. The 5' and 3' flanking regions differ in 47.7% and 39.8% of the nucleotide sites, respectively. Hence synonymous sites and flanking regions are not conserved in sequence in spite of their high AT content and T skew.  相似文献   

15.
Theory predicts that selection should be less effective in the nonrecombining genes of Y-chromosomes, relative to the situation for genes on the other chromosomes, and this should lead to the accumulation of deleterious nonsynonymous substitutions. In addition, synonymous substitution rates may differ between X- and Y-linked genes because of the male-driven evolution effect and also because of actual differences in per-replication mutation rates between the sex chromosomes. Here, we report the first study of synonymous and nonsynonymous substitution rates on plant sex chromosomes. We sequenced two pairs of sex-linked genes, SlX1-SlY1 and SlX4-SlY4, from dioecious Silene latifolia and S. dioica, and their non-sex-linked homologues from nondioecious S. vulgaris and Lychnis flos-jovis, respectively. The rate of nonsynonymous substitutions in the SlY4 gene is significantly higher than that in the SlX4 gene. Silent substitution rates are also significantly higher in both Y-linked genes, compared with their X-linked homologues. The higher nonsynonymous substitution rate in the SlY4 gene is therefore likely to be caused by a mutation rate difference between the sex chromosomes. The difference in silent substitution rates between the SlX4 and SlY4 genes is too great to be explained solely by a higher per-generation mutation rate in males than females. It is thus probably caused by a difference in per-replication mutation rates between the sex chromosomes. This suggests that the local mutation rate can change in a relatively short evolutionary time.  相似文献   

16.
Codon Substitution in Evolution and the "Saturation" of Synonymous Changes   总被引:4,自引:1,他引:3  
Takashi Gojobori 《Genetics》1983,105(4):1011-1027
A mathematical model for codon substitution is presented, taking into account unequal mutation rates among different nucleotides and purifying selection. This model is constructed by using a 61 X 61 transition probability matrix for the 61 nonterminating codons. Under this model, a computer simulation is conducted to study the numbers of silent (synonymous) and amino acid-altering (nonsynonymous) nucleotide substitutions when the underlying mutation rates among the four kinds of nucleotides are not equal. It is assumed that the substitution rates are constant over evolutionary time, the codon frequencies being in equilibrium, and, thus, the numbers of synonymous and nonsynonymous substitutions both increase linearly with evolutionary time. It is shown that, when the mutation rates are not equal, the estimate of synonymous substitutions obtained by F. Perler, A. Efstratiadis, P. Lomedico, W. Gilbert, R. Kolodner and J. Dodgson's "Percent Corrected Divergence" method increases nonlinearly, although the true number of synonymous substitutions increases linearly. It is, therefore, possible that the "saturation" of synonymous substitutions observed by Perler et al. is due to the inefficiency of their method to detect all synonymous substitutions.  相似文献   

17.
Summary A method for estimating the evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences is presented. This method is applied to genes of øX174 and G4 genomes, histone genes and-globin genes, for which homologous nucleotide sequences are available for comparison to be made. It is shown that the rates of synonymous substitutions are quite uniform among the non-overlapping genes of øX174 and G4 and among histone genes H4, H2B, H3 and H2A. A comparison between øX174 and G4 reveals that, in the overlapping segments of the A-gene, the rate of synonymous substitution is reduced more significantly than the rate of amino acid substitution relative to the corresponding rate in the nonoverlapping segment. It is also suggested that, in the coding regions surrounding the splicing points of intervening sequences of-globin genes, there exist rigid secondary structures. It is in only these regions that the-globin genes show the slowing down of evolutionary rates of both synonymous and amino acid substitutions in the primate line.  相似文献   

18.
Maliarchuk BA 《Genetika》2012,48(6):713-718
Sequence analysis of the cytochrome b gene fragment in the salamanders of the genus Salamandrella, Siberian salamander and Schrenk salamander was performed with the purpose to elucidate the effect of natural selection on the evolution of mitochondrial DNA (mtDNA) in these species. It was demonstrated that despite of notable influence of negative selection (expressed as very low dN/dS values), speciation and intraspecific divergence in salamanders was accompanied by the appearance of radical amino acid substitutions, caused by the influence of positive (directional) selection. To examine the evolutionary pattern of synonymous mtDNA sites, distribution of conservative and non-conservative substitutions was analyzed. The rates of conservative and non-conservative substitutions were nearly equal, pointing to neutrality of mutation process at synonymous mtDNA sites of salamanders. Analysis of conservative and non-conservative synonymous substitution distributions in different parts of phylogenetic trees showed that the differences between the synonymous groups compared were statistically significant only in one phylogenetic group of Siberian salamander (haplogroup C) (P = 0.02). In the group of single substitutions, located at terminal phylogenetic branches of Siberian salamanders from group C, increased rate of conservative substitutions was observed. Based on these findings, it was suggested that selective processes could have an influence on the formation of the synonymous substitution profile in the Siberian salamander mtDNA fragment examined.  相似文献   

19.
Elevated rates of nonsynonymous substitution in island birds   总被引:4,自引:0,他引:4  
Slightly deleterious mutations are expected to fix at relatively higher rates in small populations than in large populations. Support for this prediction of the nearly-neutral theory of molecular evolution comes from many cases in which lineages inferred to differ in long-term average population size have different rates of nonsynonymous substitution. However, in most of these cases, the lineages differ in many other ways as well, leaving open the possibility that some factor other than population size might have caused the difference in substitution rates. We compared synonymous and nonsynonymous substitutions in the mitochondrial cyt b and ND2 genes of nine closely related island and mainland lineages of ducks and doves. We assumed that island taxa had smaller average population sizes than those of their mainland sister taxa for most of the time since they were established. In all nine cases, more nonsynonymous substitutions occurred on the island branch, but synonymous substitutions showed no significant bias. As in previous comparisons of this kind, the lineages with smaller populations might differ in other respects that tend to increase rates of nonsynonymous substitution, but here such differences are expected to be slight owing to the relatively recent origins of the island taxa. An examination of changes to apparently "preferred" and "unpreferred" synonymous codons revealed no consistent difference between island and mainland lineages.  相似文献   

20.
The extent of amino acid differences of major histocompatibility complex molecules within species is unusually high, consistent with the finding that some pairs of alleles have persisted for more than ten million years and the view that the polymorphism has been maintained by natural selection. The disparity between synonymous and non-synonymous substitutions in the antigen recognition site, however, suggests that some non-synonymous sites have undergone a number of substitutions whereas others have little or none. To describe statistically such an overdispersed underlying process, commonly used Poisson processes are inadequate. An alternative process leads to the surprising conclusion that each non-synonymous site has accumulated as many as 2.6 substitutions, on the average, in the two lineages leading to humans and mice. The standard deviation is also very large (6.6) and the dispersion index (the ratio of the variance to the mean) is at least 17. The substitution process thus inferred qualitatively agrees with the disposition (a boomerang pattern) of substitutions between HLA-A2 and Aw68 alleles, and quantitatively agrees well with that expected where the evolution of major histocompatibility complex molecules has long been driven mostly by balancing selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号