首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A small muscle preparation of stomach circular muscle of the newt responded to carbachol (CCh) with a phasic contracture. At 20 degrees C, in Ca-free Ringer solution (+1 mM EGTA), the amplitude of CCh contracture was very rapidly inhibited to less than 10% of that in normal Ringer solution (1.8 mM Ca). The amplitude of this CCh contracture was markedly enhanced with increasing [K]0. CCh contracture in Ca-free Ringer solution was also enhanced after K contracture was induced once in the presence of 1.8 mM Ca, followed by soaking in normal Ringer solution. The amplitude of this enhanced CCh contracture persisted up to about 5 min, following rapid decrease to about 70%, and then gradually decreased to a steady level in Ca-free Ringer solution. This decrease in amplitude was prevented by increasing [K]0 during soaking in Ca-free solution; even when the temperature was elevated from 20 to 35 degrees C during the periods of soaking in Ca-free solution, CCh contracture was inhibited only by about 20% in Ca-free high K solution, whereas in Ca-free or Ca-free low Na (Tris) Ringer solution it was inhibited by more than 50%.  相似文献   

2.
Mechanical responses and changes in membrane potential induced by Na removal were investigated in dog tracheal and bronchiolar smooth muscles. In both muscles, reduction of the external Na concentration ([Na]o) to less than 70 mM produced a sustained contracture, dose dependently. The relative amplitude of the Na-free contracture was greater than that induced by excess [K]o in the trachealis. Readmission of 1-10 mM Na, after exposure to Na-free solution, relaxed the contracture evoked by Na removal, and the degree of relaxation was dependent on [Na] readmitted. In the absence of both Na and Ca, some tension remained, and readmission of Ca increased the muscle tone. Even after pretreatment with Ca-free ethylene glycol-bis (beta-aminoethylether)-N,N,N,N'-tetraacetic acid- (0.2 mM) containing solution for 30 min, removal of Na caused some mechanical response in both muscles. D 600 (10(-7) to 10(-4) M), a blocker of voltage-dependent Ca2+ influx, suppressed the response to Na removal, but 10(-4) M D 600 did not completely block the contracture. Na removal depolarized the smooth muscle membrane to a greater extent in the bronchiole than in the trachealis. It was concluded that an increase in Ca permeability across the membrane and inhibition of the Na-Ca exchange mechanism in the absence of Na are responsible for the generation of Na-free contracture in both muscles.  相似文献   

3.
Intracellular free calcium concentration [( Ca2+]1) was measured in suspensions of fura-2 loaded smooth-muscle cells isolated from the anterior byssus retractor muscle of Mytilus edulis. Successive application of 5mM carbachol (CCh) and 100mM KCl to the cells transiently elevated [Ca2+]1 from the resting value of 124 +/- 4.5nM (mean +/- S.E., n = 14) to 295 +/- 15.3 and 383 +/- 20.5 nM, respectively. The response to CCh was concentration-dependent with an ED50 of 10(-5) M. Under the microscope, 67 +/- 3.0 and 83 +/- 1.3 % of fura-2 loaded cells contracted on the addition of 5mM CCh and 100mM KCl, respectively. In Ca2+ -free sea water, the CCh induced change in [Ca2+]1 was partially suppressed whereas that induced by KCl was completely abolished, suggesting an agonist-evoked release of stored Ca2+.  相似文献   

4.
Caffeine contracture in the cultured chick myotube   总被引:1,自引:0,他引:1  
A possible function of Ca store site in cultured chick myotubes was examined by recording contraction of the myotube with special reference to the effect of caffeine. Caffeine at low concentrations (below 1 mM), applied focally on the myotube through a micropipette with a pressure pulse, elicited focal contraction without membrane potential changes. Procaine inhibited the caffeine contracture. Deuterium oxide also inhibited the caffeine contracture at low concentrations, but enhanced the maximal contracture. These observations are similar to those in the mature frog muscle fiber in which the sarcoplasmic reticulum (SR) is a main site of caffeine action. On the basis of these similarities, it was considered that caffeine acts on SR to elicit contracture in the myotube. The ability of SR to accumulate and release Ca ion seemed to be low, because caffeine contracture decreased or disappeared in a Ca-free solution in many myotubes.  相似文献   

5.
The present experiments were performed to study the actions of cyclopiazonic acid on triggered activities generated in vitro in ventricular papillary muscle and cardiomyocytes isolated from the hearts of healthy male Syrian hamsters (Biobreeders F1B). Action potentials (APs) of ventricular muscle with a diameter around 1.5 mm were recorded using a microelectrode technique and force was recorded using a transducer. Ventricular preparations were driven at 2 Hz in high [Ca]o (9 mM)-low [K]o (1 mM) solution to induce delayed after depolarizations (DADs). Triggered activities were induced on resumption of electrical stimulation after a rest period of 20 sec. Effects of cyclopiazonic acid (3-10 microM) on steady-state rhythms and post-rest triggered activities were determined. Results revealed that cyclopiazonic acid initially enhanced the amplitude of DADs and induced post-rest triggered rhythms. However, after several minutes of cyclopiazonic acid exposure, AP duration (APD) was prolonged and DADs were significantly depressed. The effects on APD and DADs were reversible after washout of cyclopiazonic acid, but the diastolic potential during rest period oscillated and was able to generate high-frequency spontaneous APs at a reduced potential level. In ventricular myocytes isolated enzymatically, ionic currents were measured using of whole-cell patch-clamp techniques. In a high [Ca]o-low [K]o solution, a series of oscillatory transient inward currents (I(ti)) were obtained on repolarization to the holding potential (-45 mV) after a depolarizing pulse to the test potential of +20 mV for 1.2 sec. Cyclopiazonic acid (10 microM) reduced significantly the magnitude of I(ti). The present results in hamster ventricular cells suggested that cyclopiazonic acid by inhibiting the sarcoplasmic reticulum (SR)-Ca2+ pump would gradually deplete the amount of Ca2+ within the SR. The consequent reduction in the amount of Ca2+ released into the cytoplasm by cyclopiazonic acid might inhibit triggered arrhythmia through a reduction of DADs and I(ti).  相似文献   

6.
The physiological properties of mechanical response and the ultrastructure in the longitudinal body wall muscle (LBWM) of the opisthobranch mollusc Dolabella auricularia were studied to obtain information about excitation-contraction coupling in somatic smooth muscles responsible for smooth and slow body movement of molluscans. The contracture tension produced by 400 mM K was not affected by Mn ions (5--10 mM) and low pH (up to 4.0), but was reduced by procaine (2 mM). The K-contracture tension was not readily eliminated in a Ca-free solution containing ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'- tetraacetate (EGTA). A large contracture tension was also produced by rapid cooling of the surrounding fluid from 20 degrees to 5 degrees--3 degrees C even when the preparation showed no mechanical response to 400 mM K after prolonged (more than 2 h) soaking in the Ca-free solution. These results indicate that the LBWM fibers contain a large amount of intracellularly stored Ca which can be effectively released by membrane depolarization. The fibers were connected with each other, forming the gap junctions, the desmosomes, and the intermediate junctions. The sarcoplasmic reticulum (SR) consisted of vesicular and tubular elements, and was mostly located near the fiber surface. The plasma membrane showed marked tubular invaginations of 600-800 A in diameter, with many branches (surface tubules), extending inwards for approximately 2 micron. These surface tubules were closely apposed to the SR, and the bridgelike structures analogous to those in the triadic junction of vertebrate skeletal muscle were observed in the space between the surface tubules and the SR. It is suggested that the influence of membrane depolarization is transmitted inwards along the surface tubules to cause the release of Ca from the SR.  相似文献   

7.
Sodium-free contractures were studied in myocardial strips from R. pipiens with extracellular sodium (Na0+) replaced by choline chloride and extracellular calcium (Ca20+) varied with EGTA buffer. At calculated Ca02+ below 2.8 X 10(-7) mol/l, no contracture occurred in most of the experiments, even in the presence of cyanide. When Ca02+ was above 2.8 X 10(-7) mol/l, relatively short tension transients of up to 80 sec duration could be avoided if the myocardial strip was previously equilibrated for 20 min in a Na+-Ca2+-free solution. Instead, contractures developed slowly within one to several hours. The maximum contracture was dependent on Ca02+ in a dose-response-like pattern. The time-course of contracture development was not affected by verapamil, but KCN significantly increased the rate of resting tension increase. In solutions with normal Na+-Ca2+ content and even in a Na+-Ca2+-free milieu, the cellular ultrastructure was normal. Development of contracture after addition of Ca2+ to the Na+-free solution was combined with ultrastructural damage of the ventricular strip. It is concluded that Na+-free contractures depend on transsarcolemmal net-Ca2+ uptake as a sum of Na-Ca-exchange-dependent Ca2+ uptake and active sequestering of intracellular free calcium Ca2+ mediated by sarcolemmal and probably intracellular Ca2+-ATPases. The negative inotropic effect of the Ca blocker verapamil seems not to be mediated by the Na-Ca exchange.  相似文献   

8.
Potassium (100 mM KC1) contracture of the isolated rat right ventricle was lower in Tyrode solution (37 mM Na) than on substituting sucrose (270 mM) for NaC1 and was biphasic in 70% of the experiments. As in slow (tonic) skeletal muscle, the maximum contracture value persisted as long as a raised KC1 concentration was maintained. Even after complete potassium depolarization it changed when Ca was altered. At 37 degrees C, the second phase of potassium contracture was higher than at 34 degrees C (p less than 0.01). The effect of K+ and Ca2+ was inhibited if the ions were added after adding sucrose to the Tyrode solution. Contracture of the rat ventricle resembled contracture of slow (tonic) skeletal muscle.  相似文献   

9.
Calcium-induced calcium release mechanism in guinea pig taenia caeci   总被引:15,自引:1,他引:14       下载免费PDF全文
Fura-2 was used to measure the amount of Ca released from the intracellular Ca store of a saponin-skinned smooth muscle fiber bundle of the guinea pig taenia caeci (width, 150-250 microns) placed in a capillary cuvette at 20-22 degrees C. The amount of Ca actively loaded into the store was assayed when released by the application of 50 mM caffeine and/or 10 microM inositol 1,4,5-trisphosphate (IP3) in the absence of ATP, and was found to have a biphasic dependence on the loading [Ca2+] with a peak near pCa 6. After Ca loading at pCa 6, IP3 released almost all the releasable Ca, whereas caffeine discharged Ca from only approximately 40% of the store. The maximum amount of Ca in the store was some 220 mumol/liter cell water. Ca in the caffeine-releasable store was released approximately exponentially to zero with time when Ca2+ was applied in the absence of ATP, and the rate constant of the Ca-induced Ca release (CICR) increased steeply with the concentration of Ca2+ applied. Increase in [Mg2+] (0.5-5.0 mM) or decrease in pH (7.3-6.7) shifted the relation between pCa and the rate of CICR roughly in parallel toward the lower pCa. An adenine nucleotide increased the rate of the CICR, but it did not change the range of effective [Ca2+]. 5 mM caffeine greatly enhanced the CICR mechanism, making it approximately 30 times more sensitive to [Ca2+]. However the drug had no Ca-releasing action in the absence of Ca2+. Procaine in millimolar concentrations inhibited the rate of the CICR. These properties are similar to those of the skeletal muscle CICR and ryanodine receptor channels. Rates of the CICR under a physiological ionic milieu were estimated from the results, and a [Ca2+] greater than 1 microM was expected to be necessary for the activation of the Ca release. This Ca sensitivity seems too low for the CICR mechanism to play a primary physiological role in Ca mobilization, unless assisted by other mechanisms.  相似文献   

10.
The contraction of the rat uterus in response to PGE1 in high K+ medium and in Ca-free solution which contained EDTA has been investigated in order to examine whether excitation-contraction coupling involves the release of Ca from an intracellular store. In uterus maximally contracted by K+, cumulative concentrations of PGE1 (1.25 - 20 ng/ml) caused maintained concentration-dependent contraction. PGE1 induced sustained contraction of rat uterus in Ca-free medium after incubation with 3mM EDTA for 50 min. In these conditions the involvement of extracellular Ca is highly unlikely. The PGE1-induced contraction could be repeated without exposure to external Ca ions and with only slight reduction in magnitude. The PGE1 concentrations required to elicit uterine contraction in Ca-free solution were about 1000 times higher than the effective doses in KCl-depolarized uterus. In conclusion, the present investigation shows that Ca influx is not essential for PGE1-induced contraction of rat uterus, although extracellular Ca enhances it presumably by increasing the free Ca levels in the cytosol.  相似文献   

11.
S Horie  S Yano  N Aimi  S Sakai  K Watanabe 《Life sciences》1992,50(7):491-498
The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.  相似文献   

12.
The role of intracellular Ca2+ as essential activator of the Na+-Ca2+ exchange carrier was explored in membrane vesicles containing 67% right-side-out and 10% inside-out vesicles, isolated from squid optic nerves. Vesicles containing 100 microM free calcium exhibited a 2-fold increase in the initial rate of Na+i-dependent Ca2+ uptake as compared with vesicles where intravesicular calcium was chelated by 2 mM EGTA or 10 mM HEDTA. The activatory effect exerted by intravesicular Ca2+ on the reverse mode of Na+-Ca2+ exchange (i.e. Na+i-Ca2+o exchange) is saturated at about 100 microM Ca2+i and displays an apparent K 1/2 of 12 microM. Intravesicular Ca2+ produced activation of Na+i-Ca2+i exchange activity rather than an increase in Ca2+ uptake due to Ca2+-Ca2+ exchange. The presence of Ca2+i was essential for the Na+i-dependent Na+ influx, a partial reaction of the Na+-Ca2+ exchanger. In fact, the Na+ influx levels in vesicles loaded with 2 mM EGTA were close to those expected from diffusional leak while in vesicles containing Ca2+i an additional Na+-Na+ exchange was measured. The results suggest that in nerve membrane vesicles Ca2+ at the inner aspect of the membrane acts as an activator of the Na+-Ca2+ exchange system.  相似文献   

13.
Exposure of adrenal chromaffin cells to carbamylcholine (CCh) in the absence of extracellular Ca2+ suppressed rises in intracellular free Ca2+ concentration ([Ca2+]i) induced by subsequent addition of Ca2+ into the incubation medium. The extent of the suppression was dependent on the concentration of CCh and the duration of exposure. A similar inhibitory effect of CCh was also observed in the case of catecholamine release. In contrast, pretreatment with 56 mM K+ did not affect these two responses induced by Ca2+. Recovery from the desensitized state was rapid, since the responses became normal within 3 min following washout of the maximum concentration of CCh. These results show that, in Ca2+-free medium, exposure of the cells to CCh induces desensitization as indicated by diminished rise in [Ca2+]i and reduced release of catecholamines. These phenomena were not due to direct inhibition of voltage-dependent Ca2+ channels by CCh, but seem to be due to an uncoupling of signal transduction between the nicotinic receptor and Ca2+ channel.  相似文献   

14.
Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca.  相似文献   

15.
Isotonic Tris-HCl containing 10 mM LaCl3 at 4 degrees C effectively removed extracellular ions in 30 min while preventing loss of intracellular ions. Intracellular Ca and Na increased during the contraction in the presence of 10 mM ouabain and then decreased during relaxation. Intracellular Na increased again during the latter part of the relaxation phase when K loss became apparent. Mg levels remained essentially constant. Ouabain responses were rapidly lost in Ca-free medium indicating that they were dependent on extracellular Ca. A 5.5-fold increase in the normal levels of extracellular K did not reduce the contraction to a submaximal dose of ouabain. A full phasic response to high K (60 mM) was observed after a 10-min exposure of the tissue to ouabain, at which time the ouabain response had returned to basal tension. The contraction to ouabain appears to be dissociated from inhibition of the Na,K-ATPase at the K site. The changes in intracellular ions indicated that ouabain contracted the muscle by increasing the plasma membrane permeability to Ca and Na and later decreased the K and Na concentration gradients, probably by inhibition of the Na,K-ATPase.  相似文献   

16.
A contraction of the rabbit ear artery can be induced by depolarizing the cells with a K-rich solution if Ca is present. 10(-9)-10(-6) M noradrenaline and 10(-8)-10(-7) M histamine cause a contraction of this tissue without modifying the membrane potential. If the histamine concentration exceeds 10(-7) M some depolarization of the membrane also occurs. Both noradrenaline and histamine also induce a contraction in Ca-free medium, even if La is present. None of these stimuli produces action potentials or fluctuations of the membrane potential. Besides these tonic contractions, the ear artery can also produce phasic contractions when 10 mM TEA is added to the medium. Such contractions are caused by the appearance of action potentials which are Ca dependent and which are similar to those appearing in visceral smooth muscle. A study of 45Ca fluxes has revealed that K depolarization and noradrenaline cause only a small increase in 45Ca uptake by the cells, while noradrenaline also releases cellular Ca, even in Ca-free medium. A comparison of tension development and 45Ca release induced by noradrenaline in Ca-free medium suggests that Ca extrusion could be very efficient in the rabbit ear artery and that it could play a direct role in its relaxation.  相似文献   

17.
The effect of increasing extracellular calcium concentration on spontaneous transmitter release was studied at both soleus (slow) and fast extensor digitorum longus (EDL) nerve terminals of control and streptozotocin-induced diabetic (STZ-D) young C57 BL mice (7 months old) depolarized by high (20 mM) extracellular potassium [K]o. Diabetes was induced by i.p. injection with a single dose of streptozotocin (200 mg/kg) at the age 5 months and the electrophysiological studies were carried out after 8 more weeks. By using intracellular recording, miniature endplate potentials (MEPPs) were first recorded in a normal [K]o Krebs solution. Subsequently, MEPPs were recorded in high [K]o Krebs solution with 4 different Ca concentrations: Ca-free/ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetra acetic acid (EGTA), 0.5, 1.5 and 2 mM Ca. MEPP frequency was lower at STZ-D than control nerve terminals in EDL but not soleus. However, MEPP frequency was progressively higher at both EDL and soleus of STZ-D than control with increasing Ca concentration in Krebs that contained 20 mM [K]o. In STZ-D slow soleus muscle, depolarization produced 0.7, 4.3, 41.6 and 62.7 vs 1.4, 2.8, 20.7 and 31.6 Hz for control in the 4 different Ca concentrations. In STZ-D fast EDL muscle, depolarization produced 0.5, 4.9, 48.2 and 66.8 vs 1.2, 2.5, 27 and 35.4 Hz for control in the 4 different Ca concentrations. Bimodal and unimodal MEPP amplitude were present at both slow and fast nerve terminals. However, depolarization increased the percentage of bimodal MEPP amplitude in STZ-D compared to control (p<0.01) mice in EDL but not soleus. The results revealed that these changes in muscle firing pattern may provide a protective effect against diabetes-induced neuropathy at the neuromuscular junction.  相似文献   

18.
The alteration in the concentration of cytosolic free calcium ([Ca2+]i) in isolated rat parotid cells caused by autonomic agents was directly measured using the Ca-sensitive fluorescent probe, quin2. [Ca2+]i of unstimulated cells was estimated to be 162.7 +/- 3.2 nM in normal medium. Carbachol (CCh) and isoproterenol (ISP) caused a rapid rise in [Ca2+]i in a dose-dependent manner. Maximum increases in [Ca2+]i induced by CCh and ISP were approximately 100% and 25% of resting level, respectively. In Ca-free medium, CCh produced a small, rapid rise in [Ca2+]i, followed by a slow decay and a return to resting level within 3-4 min, while all doses of ISP tested failed to change [Ca2+]i. These results suggest that CCh mobilizes Ca2+ from both extracellular and intracellular pools and then results in a rise in [Ca2+]i, whereas ISP may slightly mobilize only the extracellular Ca pool.  相似文献   

19.
The effects of zero extracellular Ca2+ on the contractility of rat diaphragmatic strips in vitro were studied in conjunction with various pharmacological agents known to influence the intracellular Ca2+ concentration: the Na+ ionophore, monensin, and the Na(+)-K+ pump inhibitor, ouabain, which enhance [Ca2+]i, caffeine, which induces Ca2+ release from the sarcoplasmic reticulum (SR), and ryanodine, which prevents Ca2+ retention by the SR. The effect of increasing [Ca2+]i on diaphragmatic contraction was assessed by comparing contractions induced by 120 mM K+ in the small muscle strips before and after the addition of ouabain or monensin. Monensin (20 microM) and ouabain (1-100 microM) augmented contractions up to threefold. Treatment of diaphragm strips with 3 nM ryanodine increased baseline tension 360% above the original resting tension but only if the diaphragm was electrically stimulated concurrently; 100 microM ryanodine induced contracture in quiescent tissue. High K+ contractures were of greater magnitude in the presence of ryanodine compared with control, and relaxation time was prolonged by greater than 200%. Ca(2+)-free conditions ameliorated these actions of ryanodine. Ryanodine reduced contractions induced by 10 mM caffeine and nearly abolished them in Ca(2+)-free solution. The data demonstrate that extracellular Ca2+ is important in certain types of contractile responses of the diaphragm and suggest that the processes necessary to utilize extracellular Ca2+ are present in the diaphragm.  相似文献   

20.
It is known that K(ATP) channel openers inhibit the release and refilling of Ca(2+) from intracellular stores. The present study was designed to test the effects of levcromakalim in human umbilical artery (HUA) rings stimulated by serotonin (5-HT) and KCl in Ca-free medium. Umbilical cords were obtained at vaginal or cesarean deliveries from healthy, term pregnancies. After the isolation, HUA rings were placed in organ baths in solution with indomethacin (10(-5) M) and N(G)-nitro-L-arginine methyl ester (L-NAME) (10(-3) M) at 37 degrees C and aerated with 95% O(2) and 5% CO(2) for the measurement of isometric force. In Ca-free solution with Ethylene glycol-bis (ss-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (2 mM) the contractions produced by 5-HT (10(-6) M) and KCl (40 mM) decreased significantly. Afterwards, HUA rings were treated with 5-HT and KCl in repeated manner in Ca-free medium. In contrast to KCl, 5-HT induced contractions reduced in each application, progressively. Levcromakalim (10(-4) M) abolished the contractions elicited by 5-HT. On the other hand, levcromakalim had a little but significant inhibitory effect on KCl induced contraction in Ca-free medium. These results suggest that Ca(2+) is not the only transduction pathway in KCl produced contractions of HUA smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号