首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pexiganan (Gly-Ile-Gly-Lys-Phe-Leu-Lys-Lys-Ala-Lys-Lys-Phe-Gly-Lys-Ala-Phe-Val-Lys-Ile-Leu-Lys-Lys), a 22 amino acid peptide, is an analogue of the magainin family of antimicrobial peptides present in the skin of the African clawed frog. Conformational analysis of pexiganan was carried out in different solvent environments for the first time. Organic solvents, trifluoroethanol (TFE) and methanol, were used to study the secondary structural preferences of this peptide in the membrane-mimicking environments. In addition, aqueous (D2O) and dimethyl sulfoxide (DMSO) solutions were also investigated to study the role of hydrogen bonding involved in the secondary structure formation. Fourier transform infrared absorption, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) measurements were carried out under the same conditions to ascertain the conformational assignments in different solvents. All these spectroscopic measurements suggest that the pexiganan peptide has the tendency to adopt different structures in different environments. Pexiganan appears to adopt an alpha-helical conformation in TFE, a sheet-stabilized beta-turn structure in methanol, a random coil with beta-turn structure in D2O, and a solvated beta-turn structure in DMSO.  相似文献   

2.
3.
The energy landscape for folding of the 12-28 fragment of the Alzheimer amyloid beta (Abeta) peptide is characterized using replica-exchange molecular dynamics simulations with an all-atom peptide model and explicit solvent. At physiological temperatures, the peptide exists mostly as a collapsed random coil, populating a small fraction (less than 10%) of hairpins with a beta-turn at position V18F19, with another 10% of hairpin-like conformations possessing a bend rather than a turn in the central VFFA positions. A small fraction of the populated states, approximately 14%, adopt polyproline II (PPII) conformations. Folding of the structured hairpin states proceeds through the assembly of two locally stable segments, VFFAE and EDVGS. The interactions stabilizing these locally folded structural motifs are in conflict with those stabilizing the global fold of A12-28, a signature of underlying residual frustration in this peptide. At increased temperature, the population of both beta-strand and PPII conformations diminishes in favor of beta-turn and random-coil states. On the basis of the conformational preferences of Abeta 12-28 monomers, two models for the molecular structure of amyloid fibrils formed by this peptide are proposed.  相似文献   

4.
The infrared (IR), vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) spectra of short cationic sequential peptides (L ‐Lys‐L ‐Ala‐L ‐Ala)n (n = 1, 2, and 3) were measured over a range of temperatures (20–90 °C) in aqueous solution at near‐neutral pH values in order to investigate their solution conformations and thermally induced conformational changes. VCD spectra of all three oligopeptides measured in the amide I′ region indicate the presence of extended helical polyproline II (PPII)‐like conformation at room temperature. UV‐ECD spectra confirmed this conclusion. Thus, the oligopeptides adopt a PPII‐like conformation, independent of the length of the peptide chain. However, the optimized dihedral angles ? and ψ are within the range ?82 to ?107° and 143–154°, respectively, and differ from the canonical PPII values. At elevated temperatures, the observed intensity and bandshape variations in the VCD and ECD spectra show that the PPII‐like conformation of the Lys‐Ala‐Ala sequence is still preferred, being in equilibrium with an unordered conformer at near‐neutral pH values within the range of temperatures from 20 to 90 °C. This finding was obtained from analysis of the temperature‐dependent spectra using the singular value decomposition method. The study presents KAA‐containing oligopeptides as conformationally stable models of biologically important cationic peptides and proteins. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
A 23-residue peptide termed BH(9-10) was designed based on a beta-hairpin segment of the single-layer beta-sheet region of Borrelia OspA protein. The peptide contains a large number of charged amino acid residues, and it does not follow the amphipathic pattern that is commonly found in natural beta-sheets. In aqueous solution, the peptide was highly soluble and flexible, with a propensity to form a non-native beta-turn. Trifluoroethanol (TFE) stabilized a native-like beta-turn in BH(9-10). TFE also decreased the level of solubility of the peptide, resulting in peptide precipitation. The precipitation process accompanied a conformational conversion to a beta-sheet structure, as judged with circular dichroism spectroscopy. The precipitate was found to be fibrils similar to those associated with human amyloid diseases. The fibrillization kinetics depended on peptide and TFE concentrations, and had a nucleation step followed by an assembly step. The fibrillization was reversible, and the dissociation reaction involved two phases. TFE appears to induce the fibrils by stabilizing a beta-sheet conformation of the peptide that optimally satisfies hydrogen bonding and electrostatic complementarity. This TFE-induced fibrillization is quite unusual, because most amyloidogenic peptides form fibrils in aqueous solution and TFE disrupts these fibrils. Nevertheless, the BH(9-10) fibrils have similar structure to other fibrils, supporting the emerging idea that polypeptides possess an intrinsic ability to form amyloid-like fibrils. The high level of solubility of BH(9-10), the ability to precisely control fibril formation and dissociation, and the high-resolution structure of the same sequence in the beta-hairpin conformation in the OspA protein provide a tractable experimental system for studying the fibril formation mechanism.  相似文献   

6.
Wang F  Polavarapu PL 《Biopolymers》2003,70(4):614-619
The vibrational absorption and vibrational circular dichroism (VCD) spectra of melittin in D(2)O solutions at different pH values, different salt concentrations, or different 2,2,2-trifluoroethanol (TFE) concentrations are recorded in the amide I' (1850-1600 cm(-1)) region. Two models are used to simulate this peptide in different conditions, and a coupled oscillator program is used to obtain the calculated absorption and VCD spectra. This study indicates that melittin adopts a mixed structure in D(2)O solution at low pH, low salt concentration, or low TFE concentration. With an increase in pH, salt concentration, or TFE concentration, the structure changes to alpha-helix and further increases lead to aggregation. These results demonstrate the versatility of VCD in probing the conformations of peptides under different environmental perturbations.  相似文献   

7.
Tripeptidesserve as model systems for understanding the so-called random-coil state of peptides and proteins. While it is well known that polyproline or proline-rich polypeptides adopt the very regular polyproline-II (PPII) or left-handed 3(1)-helix conformation, it was thus far not clear whether this is also the predominant structure adopted by proline-containing tripeptides. To clarify this issue, we have investigated the amide I' band profile in the ir, isotropic, and anisotropic Raman, and vibrational circular dichroism (VCD) spectrum of cationic and zwitterionic tri-proline in D(2)O. The data were analyzed by modifying a recently developed algorithm, which allows one to obtain the central dihedral angles of tripeptides from the amide I' band intensities (R. Schweitzer-Stenner, Biophysical Journal, 2002, Vol. 83, pp. 523-532). Our analysis revealed that the peptide adopts a nearly canonical PPII structure in water with psi and phi values in the range of 175 degrees -165 degrees and -70 degrees -(-80 degrees ), respectively. This is fully confirmed by the respective electronic ultraviolet-CD spectra. Our result indicates that the strong PPII propensity of trans proline results from local interactions between the pyrrolidine ring and the backbone and is not due to any long-range interactions.  相似文献   

8.
The structure of a synthetic peptide comprising the 28 amino-terminal residues of actin has been examined by 1H-NMR and CD spectroscopy. The peptide is largely unstructured and flexible in solution but becomes increasingly structured at higher trifluoroethanol (TFE) concentrations. As judged by CD with the use of two additional peptides (actin 1-20 and actin 18-28), TFE induces formation of up to 48% helical content within residues 1-20, while residues 21-28 exhibit no helical propensity. Similar results were obtained by using NMR-derived distance information in restrained molecular dynamics calculations. The calculated structure of actin 1-28 peptide in 80% TFE is well defined for the first 23 residues with a backbone root mean square deviation of 0.5 A. Two helices are formed from residues 4-13 and 16-20, and a beta-turn is formed from residues 13-16. The N-terminal residues 1-3 exhibit increased flexibility and a helix-like conformation while the C-terminal residues 21-28 show no regular secondary structure. These results are compared with the predicted secondary structure and the structure of the corresponding sequence in the crystal structure of actin [Kabsch et al. (1990) Nature 347, 37-44]. The significance of the TFE-induced peptide structure is discussed.  相似文献   

9.
The conformations of peptides corresponding to KLLIALVLCFLPLAALG have been examined in trifluoroethanol (TFE), aqueous medium by circular dichroism spectroscopy and in the solid state by Fourier Transform Infra Red Spectroscopy (FTIR). The 17-residue parent peptide and peptides corresponding to shorter segments LVLCFLPLAALG and CFLPLAALG showed preference for helical conformation in TFE. Even the shorter hydrophobic peptides corresponding to KLLIA and LVL showed propensity for beta-turn conformations in TFE. However, peptides corresponding to the relatively polar segment FLPLAALG were unordered in TFE. In water, peptides that showed ordered conformation in TFE preferred beta-conformation. In solid-state, FTIR spectra indicated that the hydrophobic peptides adopt beta-structures with extensive hydrogen bonded network in the solid-state. The hydrophobic core segment thus appears to dictate the conformational propensity of the peptide.  相似文献   

10.
A number of findings suggest that lipophilic monomeric Abeta peptides can interact with the cellular lipid membranes. These interactions can affect the membrane integrity and result in the initiation of apoptotic cell death. The secondary structure of C-terminal Abeta peptides (29-40) and the longer (29-42) variant have been investigated in solution by circular dichroism measurements. The secondary structure of lipid bound Abeta (29-40) and (29-42) peptides prepared at different lipid/peptide ratio's, was investigated by ATR-FTIR spectroscopy. Finally, the changes in secondary structure (i.e. the transition of alpha-helix to beta-sheet) of the lipid bound peptides were correlated with the induction of neurotoxic and apoptotic effects in neuronal cells. The data suggest that the C-terminal fragments of the Abeta peptide induce a significant apoptotic cell death, as demonstrated by caspase-3 measurements and DNA laddering, with consistently a stronger effect of the longer Abeta (29-42) variant. Moreover, the induction of apoptotic death induced by these peptides can be correlated with the secondary structure of the lipid bound amyloid beta peptides. Based on these observations, it is proposed that membrane bound aggregated Abeta peptides (produced locally as the result of gamma-secretase cleavage) can accumulate and aggregate in the membrane. These membrane bound beta-sheet aggregated amyloid peptides induce neuronal apoptotic cell death.  相似文献   

11.
We have analyzed by circular dichroism (CD) and proton nuclear magnetic resonance (NMR) the helical propensity of the all-beta protein acidic fibroblast growth factor (aFGF) and two peptides corresponding to beta-strand 8 (beta8 peptide, amino acids 95-107) and the beta-strand 8/turn/beta-strand 9 hairpin (beta8/9 peptide, amino acids 95-114), which has been involved in receptor binding. A secondary structure prediction of aFGF carried out by several procedures labels the 95-104 sequence as predominantly alpha-helical. A titration of aFGF with 2,2,2-trifluoroethanol (TFE) induces a change in the far-UV CD spectrum of the protein giving rise to a prominent alpha-helical shape (22% alpha-helix). The cooperativity of the transition and the moderate TFE concentrations used (midpoint at 24%) suggest that the effect of TFE is specific. Moreover, a titration performed at pH 2 yields a higher amount of alpha-helix (55%) at a smaller TFE concentration. Synthetic peptides containing the beta8 and beta8/9 sequences display a random coil conformation at pH 7 but acquire alpha-helical structure in the presence of TFE, methanol, and SDS micelles. At pH below 3.0 a significant amount (20-30%) of alpha-helical conformation is present in both the beta8 and beta8/9 peptides even in the absence of other solvent additives. The secondary structure of the peptides was determined by proton nuclear magnetic resonance (1H NMR). These results suggest that the 95-114 sequence of aFGF has helical propensity and that the protein may fold nonhierarchically in the early steps of folding, acquiring its final beta-structure by a later interaction with the rest of the polypeptide.  相似文献   

12.
Copps J  Murphy RF  Lovas S 《Biopolymers》2007,88(3):427-437
TC5b is a 20 residue polypeptide notable for its compact tertiary structure, a rarity for a short peptide. This structure is due to the "Trp-cage" motif, an association of aromatic, Pro, and Gly residues. The structure of TC5b has been fully characterized by NMR and electronic circular dichroism (ECD) studies, but has never been studied with vibrational circular dichroism (VCD) spectroscopy, which may reveal finer structure. In this study, we examine the VCD spectra of TC5b to characterize the spectroscopic signature of the peptide and its comprising structural elements. TC5b exhibited a negative-positive-negative triplet which is associated with alpha-helical structure in deuterated solvents but also signs of a polyproline II (PPII) helix in the amide I' region. Detection of this element was complicated by the aforementioned triplet form, as well as by an upfrequency shift in PPII helical elements due to the use of the deuterated organic solvents DMSO-d(6) and TFE-d(1). Nevertheless, while ECD spectra showed only alpha-helical structure for TC5b, VCD spectroscopy revealed a more complex structure which was in agreement with NMR results. VCD spectroscopy also showed a rapid conformational change of the peptide at temperatures above 35 degrees C in D(2)O and in aqueous solvent with greater than 75% DMSO-d(6) content. Molecular dynamics (MD) simulations to investigate this latter effect of DMSO-d(6) on TC5b were conducted in DMSO and 50% (v/v) DMSO in H(2)O. In DMSO unfolding of the peptide was rapid while in 50% (v/v) DMSO in H(2)O the unfolding was more gradual.  相似文献   

13.
Isotope-assisted vibrational circular dichroism (VCD) investigations have been used to probe the site specific local structure of an amyloid peptide for the first time. A seven residue peptide, NH2-KLVFFAE-COOH, which represents the Aβ(16–22) fragment of the Alzheimer’s amyloid β peptide, was used for these investigations. 13C labels were introduced separately at the carbonyl group of leucine (residue 17), alanine (residue 21) and also at both sites together. Since VCD spectra provide structure dependent signs, band shapes and frequencies, the isotope-assisted VCD spectroscopy revealed information on site specific secondary structure of the polypeptide. Isotope dilution VCD experiments provided a means to distinguish between parallel and anti-parallel nature of the β-sheet structure formed by the Aβ(16–22) fragment. The current results establish the usefulness of isotope-assisted VCD analysis in determining the site specific secondary structure of amyloid peptides.  相似文献   

14.
Temperature dependent vibrational circular dichroism (VCD) spectra of type I collagen, in solution and film states, have been measured. These spectra obtained for solution sample suggest that the thermal denaturation of collagen results in transition from poly-L-proline II (PPII) to unordered structure. The PPII structure of collagen is identified by the presence of negative VCD couplet in the amide I region, while the formation of unordered structure is indicated by the disappearance of VCD in the amide I region. The temperature dependent spectra obtained for the supported collagen film indicated a biphasic transition, which is believed to be the first vibrational spectroscopic report to support a biphasic transition during thermal denaturation of collagen film. The temperature dependent spectra of collagen films suggest that the thermal stability of collagen structure depends on its state and decreases in the order: supported film > free standing film > solution state. These observations are believed to be significant in the VCD spectroscopic analysis of secondary structures of proteins and peptides.  相似文献   

15.
Copps J  Murphy RF  Lovas S 《Biopolymers》2006,83(1):32-38
An equimolar mixture of avian pancreatic polypeptide (aPP) fragments aPP(1-11)-NH2 and Ac-aPP(12-36) had an electronic circular dichroism (ECD) spectrum that was similar to that of whole aPP in H2O and even more so in 30% (v/v) trifluoroethanol (TFE) in 15 mM Na2HPO4, but was different from the sum of the spectra of the individual fragments. The vibrational circular dichroism (VCD) spectrum of the combined fragments in 30% (v/v) TFE in 15 mM Na2HPO4 in D2O was also similar to that of the intact aPP and unlike the sum of the VCD spectra of the fragments. The interaction of these fragments is thus sufficient to support the conformation of whole aPP. This study demonstrates that VCD, in combination with ECD, is useful for the study of protein-protein interactions.  相似文献   

16.
A L Stone  J Y Park  R E Martenson 《Biochemistry》1985,24(23):6666-6673
Myelin basic protein (MBP) is a major protein constituent of the myelin sheath of the central nervous system, where it is believed to have functional alpha-helical segments. One element of the function of the protein might be "conformational adaptability" of specific regions of its amino acid sequence, since the purified protein appears to be largely devoid of ordered structure. To pursue this question, low-ultraviolet circular dichroism (CD) spectroscopy was conducted on the sequential thrombic peptides 1-95 and 96-168 of the protein in the presence of 0-92% trifluoroethanol (TFE), a solvent known to promote stable secondary structures in polypeptides. The series of CD spectra of the oligopeptides were subjected to a computerized best-fit analysis of four peptide conformations, the alpha-helix, beta-structure, beta-turn, and nonordered form. Agreement between experimental and best-fit composite spectra was achieved when standard CD curves of peptide conformations were derived from known theoretical spectra and experimental spectra of polypeptides. In dilute buffer alone, oligopeptides 1-95 and 96-168 evidence no alpha-helix but significant beta-structure (18% and 23%, respectively), as well as a predominant, extended nonordered conformation. However, the two parts of the protein differed in conformational adaptability. From 0% to 30% TFE, 96-168 exhibited concomitant transitions to 10% helix and 32% beta-structure from the nonordered form. In contrast, in 10-30% TFE, 1-95 underwent a transition to approximately 21% helix with partial loss of beta-structure as well as nonordered form; higher concentrations of TFE (40-75%) promoted additional transitions to both helix and beta-structure (totaling 33% and 25%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
R E Martenson  J Y Park  A L Stone 《Biochemistry》1985,24(26):7689-7695
Four sequential peptides (sequences 1-63, 64-95, 96-128, and 129-168) derived from rabbit myelin basic protein by thrombic cleavage were examined by low-ultraviolet circular dichroism spectroscopy in 0.5 mM tris(hydroxymethyl)aminomethane hydrochloride (pH approximately 7.2) containing 0-92% trifluoroethanol (TFE). In the absence of the alcohol, all of the peptides contained a significant amount (17-29%) of beta-structure. In the presence of relatively low concentrations (up to 30%) of TFE, all of the peptides except 96-128 adopted considerable alpha-helix (16-33%). This involved a transition from the beta-structure in peptide 1-63 and transitions from the nonordered structure in peptides 1-63, 64-95, and 129-168. Furthermore, additional alpha-helix formed in peptide 1-63 between 30% and 92% TFE at the expense of nonordered structure, whereas the alpha-helix formation above 50% TFE in peptide 129-168 resulted largely from a beta-structure----alpha-helix transition. With the exception of the 129-168 peptide, approximately 65-100% of the maximum level of beta-structure persisted throughout the entire range of TFE concentration. In the case of peptide 129-168, however, most of the beta-structure was converted to alpha-helix and nonordered structure at 75% TFE. While the present results support our previous assignments of beta-structure- and alpha-helix-forming regions to specific amino acid sequences of the basic protein, they also demonstrate that the beta-structure----alpha-helix transitions evidenced at various concentrations of TFE were influenced to a considerable degree by the length of the peptide, presumably due to the presence or absence of interactions between noncontiguous portions of the myelin basic protein polypeptide chain.  相似文献   

18.
The principal neutralizing determinant (PND) of HIV-1 is found in the V3 loop of the envelope glycoprotein. Antibodies elicited by peptides from this region, containing the GlyProGlyArgAlaPhe (GPGRAF) sequence, were able to neutralize diverse HIV-1 isolates [Javaherian et al. (1990) Science 250, 1590-1593]. The GPGR tetrapeptide was predicted to adopt a type II beta-turn conformation. Earlier, we showed that glycosylation of synthetic T cell epitopic peptides at natural glycosylation sites stabilized beta-turns [Otv?s et al. (1991) Int. J. Pept. Protein Res. 38, 467-482]. To evaluate the secondary structure modifying effect of the introduction of an N-glycosylated asparagine residue and to find a correlation between conformation and a possible PND potential, a series of glycopeptide derivatives, N(sugar) GPGRAFY-NH2 (4a-f), have been prepared, together with the parent peptides GPGRAFY-NH2 (2) and NGPGRAFY-NH2 (3), by solid-phase peptide synthesis [sugars: (a) beta-D-glucopyranosyl (Glc); (b) beta-D-galactopyranosyl (Gal); (c) Glc-beta(1----4)-Glc; (d) 2-acetamido-2-deoxy-beta-D-glucopyranosyl (GlcNAc); (e) 2-acetamido-2-deoxy-beta-D-galactopyranosyl (GalNAc); (f) GlcNAc-beta(1----4)-GlcNAc; sugars are attached through a beta (1----N beta) linkage to asparagine (N).] Peptides 2-4 were characterized by amino acid analysis, reversed-phase HPLC, and fast atom bombardment mass spectrometry. Circular dichroism (CD) and Fourier-transform infrared (FT-IR) spectroscopic studies were performed in trifluoroethanol (TFE) and water (D2O was used in FT-IR experiments). Nonglycosylated peptides showed significantly different CD spectra in aqueous and TFE solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The conformational features of a peptide derived by the 10-30 sequence of the mitochondrial domain of AKAP121 [Ac-1XKKPLALPGMLALLGWWWFFSRKKX25-NH2 (X=beta-Ala)] in water and in a water/trifluoroethanol (TFE) mixture at 298 K have been determined by NMR and CD spectroscopy. Backbone clustering analysis of NMR-derived structures led to the identification of a single representative structure in water/TFE. The structure of the peptide consists mainly of an alpha-helix, whose core is the region 7-23, with a less ordered N-terminal part. These data are confirmed by CD analysis. It is noteworthy that the high hydrophobic Trp16-Phe20 segment, that might also mediate interaction with tubulin, is organized in an alpha-helical wheel. Our conformational data can be the starting point for the development of highly selective peptides that interfere with the biological function of the Protein Kinase A scaffold protein AKAP121.  相似文献   

20.
The molecular conformations of salmon calcitonin in aqueous solution have been investigated by exploiting the different influences of excitonic coupling on the amide I band profile in the isotropic and anisotropic Raman, FTIR, and vibrational circular dichroism spectra of a polypeptide. The N-terminal loop, caused by a disulfide bridge between cysteines at positions 1 and 7, was modeled by performing a conformational search by molecular mechanics calculations. The remaining part of the peptide chain was modeled as a mixture of three sequences containing different fractions of residues adopting poly-l-proline II (PPII), extended beta-strand, and alpha-helix-like conformations. This yielded an excellent reproduction of the experimentally observed amide I' band profiles. A comparison with recent data on the beta-amyloid fragment Abeta(1)(-)(28) revealed a lower PPII content and more conformational heterogeneity for calcitonin. Thus, our results underscore the notion that individual structural propensities of amino acid residues give rise to structural differences between the unfolded states of even long peptide chains, at variance with expectations based on a random or statistical coil model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号