首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Patkowski  W Eimer  T Dorfmüller 《Biopolymers》1990,30(9-10):975-983
The collective internal dynamics of transfer RNA(Phe) from brewer's yeast in solution was studied by depolarized dynamic light scattering (DDLS). Within the melting region of tRNA the depolarized spectra consist of two Lorentzian, where the narrow (slow) component describes the overall rotation of the macromolecule. The broad component is attributed to the collective reorientation of the bases within the biopolymer. At high temperature only this relaxation process is observed in the spectrum. The viscosity dependence of the collective internal relaxation process is described by the Stokes-Einstein-Debye equation for rotational diffusion. Estimates of the internal orientational pair correlation factor from the integral depolarized intensities of tRNA(Phe) solutions indicates that the observed dynamics correspond to the collective reorientation of approximately 5 bases. A comparison of the results presented with DDLS studies on the aggregation of the mononucleotide guanosine-5'-monophosphate confirms this result. For a further characterization of the relaxation process we studied the effect of hydrostatic pressure (1-1000 bar) on the depolarized spectra of tRNA. While other spectroscopic methods like nmr, fluorescence polarization anisotropy decay, or ESR give information about the very local motion of a single base within the DNA or RNA, this study shows that by DDLS one can characterize collective internal motions of macromolecules.  相似文献   

2.
Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR relaxation measurements for several proteins are beginning to reveal the role of protein dynamics in protein stability and ligand binding.  相似文献   

3.
4.
Depolarized laser light-scattering theory was applied to derive the autocorrelation function of laser light scattered by motile spermatozoa, assuming that each spermatozoon is a chain of rotatable rigid ellipsoids of revolution and also that the rotational velocity about an axis perpendicular to the symmetry axis of the ellipsoid is constant for times of the order of the characteristic decay time of the autocorrelation function. The rotations are produced by flagellar movements of the spermatozoa. The correlation function thus obtained was related to the second-order coefficient of a Legendre polynomial expansion of the rotation of the direction angle of the ellipsoidal axis. The experimental fact that the correlation function for dead spermatozoa of sea urchin resembled that for flagella mechanically separated from spermatozoa indicated to us that the depolarized light was scattered mainly by flagella. The rotational velocity distribution of the flagella was determined by comparing the theoretical analysis with the experimentally obtained correlation functions for the motile and dead spermatozoa. The value of the average velocity caused by the flagellation, 230 rad/s, was in good agreement with that measured under an optical microscope.  相似文献   

5.
The aggregation processes leading to crystallization and precipitation of canavalin have been investigated by dynamic light scattering (DLS) in photon correlation spectroscopy (PCS) mode. The sizes of aggregates formed under various conditions of pH, salt concentration, and protein concentrations were deduced from the correlation functions generated by the fluctuating intensity of light scattered by the solutions of the protein. Results obtained indicate that the barrier to crystallization of canavalin is the formation of the trimer, a species that has been characterized by x-ray crystallographic studies (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480). The dimensions of the trimer in solution are in good agreement with those obtained both from the crystal (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480) and from a low angle x-ray scattering study in solution (Plietz, P., P. Damaschun, J. J. Müller, and B. Schlener. 1983. FEBS [Fed. Eur. Biochem. Soc.] Lett. 162:43-46). Furthermore, under conditions known to lead to the formation of rhombohedral crystals of canavalin, a limiting size is reached at high concentrations of canavalin. The size measured corresponds to an aggregate of trimers making a unit rhombohedral cell consistent with x-ray crystallographic data (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480). Presumably, such aggregates are the nuclei from which crystal growth proceeds. The present study was undertaken primarily to test the potential of DLS (PCS) as a tool for rapid, routine screening to determine the ultimate fate of protein solutions (i.e., crystallization or amorphous precipitation) at an early stage, therefore eliminating the need for long-term visual observation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Micelles of cholesterol in aqueous solution have been investigated using polarized and depolarized dynamic light scattering. They are shown to be highly extended and characterized by a narrow size distribution. It is shown that a rod-like model is applicable with length, L = 580 nm. Determination of the rotational diffusion coefficient by analysis of the autocorrelation function gave a value of theta = 150 s-1, which is close to the calculated value for the rod with this dimension. Depolarized dynamic light scattering measurements as a function of angle gave a value of 110 s-1.  相似文献   

7.
8.
9.
Abstract  Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) [21], we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices.  相似文献   

10.
The hydrodynamic properties of large homodisperse single stranded DNAs complexed with the helix destabilizing protein of phage T4, the product of gene 32 (GP32), have been measured. The results suggest a size of the binding site between 8 and 10 nucleotides/GP32 molecule, in reasonable agreement with earlier work on a complex between GP32 and single stranded 145 base DNA. From static light scattering experiments it is concluded that the persistence length of these complexes is about 30 nm, distinctly smaller than the generally accepted value for double stranded DNA. The quasi-elastic light scattering properties of the DNA-GP32 complexes were determined. The variation of the apparent translation diffusion coefficient Dapp with the scattering vector q was analyzed using the discrete ISMF and Rouse-Zimm models [S.C. Lin et al., Biopolymers 17 (1978) 425]. The model parameters that followed from the fit of Dapp versus q2 and from an extensive global analysis of the actually measured autocorrelation functions agreed with the notion that these DNA-protein complexes are indeed rather flexible. The continuous Soda model [K. Soda, Macromolecules 17 (1984) 2365] could successfully explain the variation of Dapp versus q2, assuming a persistence length of 30 nm and a base-base distance in the complex of 0.44 nm.  相似文献   

11.
Using laser light scattering, we have measured the static and dynamic structure factor of two different superhelical DNAs, p1868 (1868 bp) and simian virus 40 (SV40) (5243 bp), in dilute aqueous solution at salt concentrations between 1 mM and 3 M NaCl. For both DNA molecules, Brownian dynamics (BD) simulations were also performed, using a previously described model. A Fourier mode decomposition procedure was used to compute theoretical light scattering autocorrelation functions (ACFs) from the BD trajectories. Both measured and computed autocorrelation functions were then subjected to the same multiexponential decomposition procedure. Simulated and measured relaxation times as a function of scattering angle were in very good agreement. Similarly, computed and measured static structure factors and radii of gyration agreed within experimental error. One main result of this study is that the amplitudes of the fast-relaxing component in the ACF show a peak at 1 M salt concentration. This nonmonotonic behavior might be caused by an initial increase in the amplitudes of internal motions due to diminishing long-range electrostatic repulsions, followed by a decrease at higher salt concentration due to a compaction of the structure.  相似文献   

12.
1H-NMR cross-relaxation rates and nonselectivelongitudinal relaxation times have been obtained at two magnetic fields (7.0and 11.8 T) and at a variety of temperatures for the branchedtetrasaccharide methyl3-O--N-acetyl-galactosaminyl--galactopyranosyl-(14)[3-O--fucosyl]-glucopyranoside (1), an inhibitor of astrocyte growth. Inaddition, 13C-NMR relaxation data have also been recorded atboth fields. The 1H-NMR relaxation data have been interpretedusing different motional models to obtain proton–proton correlationtimes. The results indicate that the GalNAc and Fuc rings display moreextensive local motion than the two inner Glc and Gal moieties, since thosepresent significantly shorter local correlation times. The13C-NMR relaxation parameters have been interpreted in termsof the Lipari–Szabo model-free approach. Thus, order parameters andinternal motion correlation times have been deduced. As obtained for the1H-NMR relaxation data, the two outer residues possess smallerorder parameters than the two inner rings. Internal correlation times are inthe order of 100 ps. The hydroxymethyl groups have also different behaviour,with the exocyclic carbon on the glucopyranoside unit showing the highestS2. Molecular dynamics simulations using a solvated systemhave also been performed and internal motion correlation functions have beendeduced from these calculations. Order parameters and interproton distanceshave been compared to those inferred from the NMR measurements. The obtainedresults are in fair agreement with the experimental data.  相似文献   

13.
The backbone dynamics of uniformly 15N-labeled reduced and oxidized putidaredoxin (Pdx) have been studied by 2D 15N NMR relaxation measurements. 15N T1 and T2 values and 1H-15N NOEs have been measured for the diamagnetic region of the protein. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameters (S2), the effective correlation time for internal motions (tau e), and the 15N exchange broadening contributions (Rex) for each residue, as well as the overall correlation time (tau(m)). Order parameters for the reduced Pdx are generally higher than for the oxidized Pdx, and there is increased mobility on the microsecond to millisecond time scale for the oxidized Pdx, in comparison with the reduced Pdx. These results clearly indicate that the oxidized protein exhibits higher mobility than the reduced one, which is in agreement with the recently published redox-dependent dynamics studied by amide proton exchange. In addition, we observed very high T1/T2 ratios for residues 33 and 34, giving rise to a large Rex contribution. Residue 34 is believed to be involved in the binding of Pdx to cytochrome P450cam (CYP101). The differences in the backbone dynamics are discussed in relation to the oxidation states of Pdx, and their impact on electron transfer. The entropy change occurring on oxidation of reduced Pdx has been calculated from the order parameters of the two forms.  相似文献   

14.
Dynamic light scattering experiments were performed on solutions of the bacteriophages T7 and T4B in order to obtain the rotational diffusion coefficients of these phages. Correlation functions were determined from the depolarized intensity scattered in the forward direction. The apparatus used in this study is described in detail. Particular attention is paid to the minimalization of the depolarized intensity due to double scattering. If double scattering cannot be neglected, the correlation function of the depolarized field is the sum of the correlation functions resulting from single and double scattering. It is shown that by correcting for double scattering, it is then possible to obtain the rotational diffusion coefficient of the macromolecules. Although the optical anisotropy of both T4B (retracted fibers) and T7 is very small, the experimental conditions could be chosen in such a way that no depolarized scattering due to double scattering was observed. The measured rotational diffusion coefficients for T4B and T7 are D = 258 ± 12 and 4528 ± 100 sec?1, respectively. These values compare very well with those obtained by electric birefringence experiments.  相似文献   

15.
Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15N NMR relaxation experiments. 15N T1 and T2 values and 1H-15N NOEs of uniformly 15N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S2), the effective correlation time for internal motion (τe), the 15N exchange broadening contributions (Rex) for each residue, and the overall correlation time (τm) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.  相似文献   

16.
The self-assembly of the tubulin homologue FtsZ at the mid-cell is a critical step in bacterial cell division. We introduce dynamic light scattering (DLS) spectroscopy as a new method to study the polymerization kinetics of FtsZ in solution. Analysis of the DLS data indicates that the FtsZ polymers are remarkably monodisperse in length, independent of the concentrations of GTP, GDP, and FtsZ monomers. Measurements of the diffusion coefficient of the polymers demonstrate that their length is remarkably stable until the free GTP is consumed. We estimated the mean size of the FtsZ polymers within this interval of stable length to be between 9 and 18 monomers. The rates of FtsZ polymerization and depolymerization are likely influenced by the concentration of GDP, as the repeated addition of GTP to FtsZ increased the rate of polymerization and slowed down depolymerization. Increasing the FtsZ concentration did not change the size of FtsZ polymers; however, it increased the rate of the depolymerization reaction by depleting free GTP. Using transmission electron microscopy we observed that FtsZ forms linear polymers in solutions which rapidly convert to large bundles upon contact with surfaces at time scales as short as several seconds. Finally, the best studied small molecule that binds to FtsZ, PC190723, had no stabilizing effect on Caulobacter crescentus FtsZ filaments in vitro, which complements previous studies with Escherichia coli FtsZ and confirms that this class of small molecules binds Gram-negative FtsZ weakly.  相似文献   

17.
Quasielastic light scattering methods were used to study calf thymus DNA in solutions of LiCl, NaCl, NH4Ac, and NH4Cl. Plots of the reciprocal relaxation time (1/τ) vs sin2(θ/2), where θ is the scattering angle, exhibit two linear regions, in accordance with theories for semiflexible polymers based on the t → 0 approximation. In these theories the slope of the linear region at low angles is associated with the translational diffusion coefficient (Dt), whereas the slope of the linear region at high angles is associated with the segmental diffusion coefficient (Ds = kT/?s). The midpoint of the “transition” between these two linear regions is associated with the mean displacement between segments (b). Data presented here indicate that the Rouse-Zimm parameters b and ?s are significantly different for DNA in 0.4M NH4Cl relative to the other salts at comparable ionic strengths. It is suggested that this difference reflects local solvent structure and that both b and Ds are sensitive to the local water structure.  相似文献   

18.
The intensity autocorrelation function for the depolarized component of forward-scattered light from a solution of large polymeric molecules is derived in terms of the correlation function for the amplitudes of the Y21(θ,?) fluctuations in the anglar distribution of segments in the solution without any assumptions regarding the statistical properties of the scatterad light field. Effects arising from the use of polychromatic incident light and from the mixing of the scattered and polychromatic incident light beams are examined in detail. Apparatus for observing the depolarized forward-scattered light, digitizing and storing the fluctuating phototube current at rates from 10 to 540,000 times per second, and computing the correlation functions directly in the time-domain is described herein. Correlation functions were obtained for 0.05 mg/ml solution of tobacco mosaic virus at pH 9.1 and also at pH 6. The degree of association of the virus appears to be independent of pH, and the monomer relaxation times (corrected to 25°C) extracted from the data by a least-squares procedure lie in the range 0.44–0.49 msec, also independent of pH. The absence of faster component in the correlation function between 6 μsec and 0.5 msec is used in conjunction with thermal fluctuation theory to infer a lower limit for the effective Young's modulaus of the rod, E ≤ 2.5 × 107 dynes/cm2.  相似文献   

19.
We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due to multiple scattered and anisotropy scattered light from the ribosomal particle. We discuss extensively the subtraction procedure used to obtain the rotational correlation time from the experimental correlation function. We have also obtained the translational diffusion coefficient from the same sample by determining the polarized correlation function. The hydrodynamic radius determined from the rotational diffusion coefficient is only slightly larger than the radius obtained from the translational diffusion coefficient. Therefore the ribosomal particle has a non-spherical shape. This conclusion, however, could be impaired by the effect of free draining of the ribosome.  相似文献   

20.
This paper presents a procedure for detection of intermediate nanosecond internal dynamics in globular proteins. The procedure uses 1H-15N relaxation measurements at several spectrometer frequencies and hydrodynamic calculations based on experimental self-diffusion coefficients. New heteronuclear experiments, using pulse field gradients, are introduced for the measurement of translation diffusion coefficients of 15N labeled proteins. An advanced interpretation of recently published (Luginbühl et al., Biochemistry, 36, 7305-7312 (1997)) backbone amide 15N relaxation data, measured at two spectrometers (400 and 750 MHz for 1H) for N-terminal DNA-binding domain (1-63) of 434 repressor, is presented. Non-applicability of commonly used fast (picosecond) dynamics model (FD) was justified by (i) poor fit of relaxation data by the FD model-free spectral density function both for isotropic and anisotropic models of the overall molecular tumbling; (ii) specific dependence of the overall rotation correlation times calculated from T1/T2 ratio on the spectrometer frequency; (iii) mismatch of the ratio of longitudinal 15N relaxation times T1, measured at different spectrometer frequencies, in comparison with that anticipated for the FD model; (iv) significantly underestimated overall rotation correlation time provided by the FD model (5.50+/-0.15 and 5.80+/-0.15 ns for 750 and 400 MHz spectrometer frequency respectively) in comparison with correlation time obtained from hydrodynamics. On the other hand, all relaxation and hydrodynamics data are in good correspondence with the model of intermediate (nanoseconds) dynamics. Overall rotation correlation time of 7.5+/-0.7 ns was calculated from experimental translation self-diffusion rate using hydrodynamics formalism (Garcia de la Torre, J. and Bloomfield, V.A. Quart. Rev. Biophys., 14, 81-139 (1981)). The statistical analysis of 15N relaxation data along with the hydrodynamic consideration clearly revealed that most of the residues in 434(1-63) repressor are involved in the nanosecond internal dynamics characterized by the the mean order parameters of 0.59+/-0.06 and the correlation times of ca. 5 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号