首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

2.
Xie G  Ye JH 《PloS one》2012,7(5):e36716
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1) receptors (D(1)Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1)Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1)R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1)Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.  相似文献   

3.
In this preliminary report we showed that 3,4-dihydroxyphenylacetic acid (DOPAC), the major metabolite of dopamine (DA), is present in the ventral tegmental area. This finding indicates that in the ventral tegmental area, which contains the cell bodies of dopaminergic neurons of the mesocortical and mesolimbic DA systems, DA may be released by a mechanism similar to that operating in the nerve endings. However, haloperidol, which increases DOPAC levels in the substantia nigra, failed to do so in the ventral tegmental area. The results support the contention that DA neurons in the ventral tegmental area have distinctive features from nigral DA neurones.  相似文献   

4.
While the abuse of opiate drugs continues to rise, the neuroadaptations that occur with long-term drug exposure remain poorly understood. We describe here a series of chronic morphine-induced adaptations in ventral tegmental area (VTA) dopamine neurons, which are mediated via downregulation of AKT-mTORC2 (mammalian target of rapamycin complex-2). Chronic opiates decrease the size of VTA dopamine neurons in rodents, an effect seen in humans as well, and concomitantly increase the excitability of the cells but decrease dopamine output to target regions. Chronic morphine decreases mTORC2 activity, and overexpression of Rictor,?a component of mTORC2, prevents morphine-induced changes in cell morphology and activity. Further, local knockout of Rictor in VTA decreases DA soma size and reduces rewarding responses to morphine, consistent with the hypothesis that these adaptations represent a mechanism of reward tolerance. Together, these findings demonstrate a novel role for AKT-mTORC2 signaling in mediating neuroadaptations to opiate drugs of abuse.  相似文献   

5.
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.  相似文献   

6.
Liu Z  Han J  Jia L  Maillet JC  Bai G  Xu L  Jia Z  Zheng Q  Zhang W  Monette R  Merali Z  Zhu Z  Wang W  Ren W  Zhang X 《PloS one》2010,5(12):e15634
Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.  相似文献   

7.
《Journal of Physiology》1998,92(3-4):209-213
While trying to mimic the dose and time course of nicotine as it is obtained by a smoker, we found the following results. The initial arrival of even a low concentration of nicotine increased the firing rate of dopaminergic neurons from the ventral tegmental area (VTA) and increased the spontaneous vesicular release of GABA from hippocampal neurons. Longer exposure to nicotine caused variable, but dramatic, desensitization of nicotine receptors and diminished the effects of nicotine. The addictive properties of nicotine as well as its diverse effects on cognitive function could be mediated through differences in activation and desensitization of nicotinic receptors in various areas of the brain.  相似文献   

8.
The dopaminergic neurons of the substantia nigra pars compacta and ventral tegmental area play a crucial role in regulating movement and cognition respectively. Several lines of evidence suggest that a degeneration of dopaminergic cells in the substantia nigra produces the symptoms of Parkinson's disease. On the other hand, a hyperactivity of the dopaminergic transmission in the brain induces dyskinesia, dystonia and psychosis. It is also well established that the euphoric and rewarding responses evoked by drugs of addiction, such as amphetamine and cocaine, are mediated by central dopamine systems. Electrophysiological experiments which study the activity of single dopaminergic neurons in the ventral mesencephalon have shown that dopamine and dopaminergic drugs reduce the firing frequency of these cells. This is due to the stimulation of D2-D3 autoreceptors and to a hyperpolarization of the membrane produced by an increase in potassium conductance. In addition, substances which increase the release (amphetamine), the synthesis (levodopa) or block the uptake (cocaine, nomifensine, amineptine) of dopamine in the brain inhibit the firing activity of the dopaminergic cells throughout dopamine-mediated mechanisms. In this review, we will briefly examine the literature concerning the physiological and behavioural responses caused by dopamine and dopaminergic agents on the dopaminergic neurons of the ventral mesencephalon. Our conclusion suggests that the electrophysiological actions of dopamine and dopamine-related drugs on dopaminergic cells in the ventral mesencephalon might be indicative of the pharmacological effects of these agents on the brain.  相似文献   

9.
《Cell reports》2023,42(9):113029
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

10.
A statistical analysis was made of spike activity and the shape and duration of individual action potentials in cells from the mesencephalic ventral tegmental area and adjacent regions during experiments on awake rats. Four groups of cells were identified in this test population whith electrophysiological features which may relate to their distinctive neurochemical profile and to their specific afferent connections.Institute of Pharmacology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 6, pp. 729–737, November–December, 1986.  相似文献   

11.
Borgkvist A  Mrejeru A  Sulzer D 《Neuron》2011,70(5):803-805
A small number of ventral tegmental area dopamine neurons engage in numerous and apparently contradictory functions--how can this be? A clue is provided by Lammel and colleagues in this issue of Neuron: some VTA dopamine neurons display synaptic plasticity in response to cocaine, and others in response to pain, and these populations are distinguished by their axonal projections and Ih.  相似文献   

12.
Midbrain dopamine (DA) cells of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) exhibit somatodendritic release of DA. To address how somatodendritic release is regulated by synaptic glutamatergic and GABAergic input, we examined the effect of ionotropic-receptor antagonists on locally evoked extracellular DA concentration ([DA]o) in guinea pig midbrain slices. Evoked [DA]o was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. In SNc, evoked [DA]o was 160% of control in the presence of the AMPA-receptor antagonist, GYKI-52466, or the NMDA-receptor antagonist, AP5. Similar increases were seen with the GABAA-receptor antagonist, picrotoxin, or the GABA(B)-receptor antagonist, saclofen. The increase seen with GYKI-52466 was prevented when both picrotoxin and saclofen were present, consistent with normal, AMPA-receptor mediated activation of GABAergic inhibition. The increase with AP5 persisted, however, implicating NMDA-receptor mediated activation of another inhibitory circuit in SNc. In the VTA, by contrast, evoked [DA]o was unaffected by GYKI-52466 and fell slightly with AP5. Neither picrotoxin nor saclofen alone or in combination had a significant effect on evoked [DA]o. When GABA receptors were blocked in the VTA, evoked [DA]o was decreased by 20% with either GYKI-52466 or AP5. These data suggest that in SNc, glutamatergic input acts predominantly on GABAergic or other inhibitory circuits to inhibit somatodendritic DA release, whereas in VTA, the timing or strength of synaptic input will govern whether the net effect on DA release is excitatory or inhibitory.  相似文献   

13.
Clozapine has a remarkable efficacy in treatment-resistant schizophrenia and is one of the most effective antipsychotic drugs used today. The clinical effects of clozapine are suggested to be related to a unique interaction with a variety of receptor systems, including the glutamatergic receptors. Kynurenic acid (KYNA) is an endogenous blocker of alpha7 nicotinic receptors and a glutamate-receptor antagonist, preferentially blocking N-methyl-D-aspartate (NMDA) receptors. In the present in vivo electrophysiological study, changes in endogenous concentration of brain KYNA were utilized to analyze an interaction between clozapine and the glycine site of NMDA receptors. In control rats intravenously administered clozapine (0.078-10 mg/kg) increased the firing rate and the burst firing activity of dopamine (DA) neurons in the ventral tegmental area (VTA). Pretreatment with indomethacin (50 mg/kg, i.p., 1-3.5 h), a cyclooxygenase (COX)-inhibitor with a preferential selectivity for COX-1, which produced a significant elevation in brain KYNA levels, reversed the excitatory action of clozapine into an inhibitory response. In contrast, pretreatment with the COX-2 selective inhibitor parecoxib (25 mg/kg, i.v., 1-1.5 h) decreased brain KYNA formation and furthermore, clearly potentiated the excitatory effect of clozapine. Our results show that endogenous levels of brain KYNA are of importance for the response of clozapine on VTA DA neurons. On the basis of the present data we propose that clozapine is able to interact with glutamatergic mechanisms, via actions at the NMDA/glycine receptor.  相似文献   

14.
Wang SS  Wei CL  Liu ZQ  Ren W 《生理学报》2011,63(1):25-30
中脑腹侧被盖区(ventral tegmental area,VTA)多巴胺能神经元的簇放电会导致其突触末梢多巴胺释放量瞬时大量增加,已被公认是编码奖赏效应的功能相关信号,但诱发多巴胺能神经元产生簇放电的神经调节的具体机制尚不完全清楚。为深入理解诱发VTA多巴胺能神经元产生簇放电介导奖赏信号的递质机制和不同脑区间的协同作用,本实验利用大鼠离体脑片,研究了胆碱能受体激动剂卡巴胆碱单独灌流,兴奋性谷氨酸能受体激动剂L-谷氨酸单独脉冲式给药及二者同时作用时VTA多巴胺能神经元簇放电的产生。结果显示,在离体脑片,卡巴胆碱(10μmol/L)持续灌流或L-谷氨酸(3mmol/L)脉冲式给药均能够诱发多巴胺能神经元产生簇放电。在二者单独作用不能诱发簇放电的神经元,卡巴胆碱和谷氨酸联合用药则可以诱发出簇放电。这些结果提示,卡巴胆碱和L-谷氨酸在诱发多巴胺能神经元簇放电的过程中具有协同作用。  相似文献   

15.
Alpha-synuclein is a presynaptic protein of vertebrates that belongs to the family of synucleins. Normal functions of synucleins remain unknown. Alpha-synuclein is one of the causative factors of the familial and idiopathic forms of Parkinson’s disease (PD). The progressive loss of dopaminergic (DA) neurons is characteristic of PD and the most severe damage occurs in the substantia nigra (SN). This leads to an erraticism of the synthesis and synaptic secretion of the neurotransmitters, subsequently resulting in the loss of the connections between brain areas. This work shows that alpha-synuclein is directly involved in the formation of the mature DA neurons of the midbrain at different stages of the ontogenesis and these findings are consistent with data obtained in other studies. Thus, alpha-synuclein may have a varying modulating effect on the growth dynamics and the fate of populations of DA neurons.  相似文献   

16.
17.
In this work, we investigated the role of nitric oxide (NO) in neurotoxicity triggered by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in cultured hippocampal neurons. In the presence of cyclothiazide (CTZ), short-term exposures to kainate (KA; 5 and 15 min, followed by 24-h recovery) decreased cell viability. Both NBQX and d-AP-5 decreased the neurotoxicity caused by KA plus CTZ. Long-term exposures to KA plus CTZ (24 h) resulted in increased toxicity. In short-, but not in long-term exposures, the presence of NO synthase (NOS) inhibitors (l-NAME and 7-NI) decreased the toxicity induced by KA plus CTZ. We also found that KA plus CTZ (15-min exposure) significantly increased cGMP levels. Furthermore, short-term exposures lead to decreased intracellular ATP levels, which was prevented by NBQX, d-AP-5 and NOS inhibitors. Immunoblot analysis revealed that KA induced neuronal NOS (nNOS) proteolysis, gradually lowering the levels of nNOS according to the time of exposure. Calpain, but not caspase-3 inhibitors, prevented this effect. Overall, these results show that NO is involved in the neurotoxicity caused by activation of non-desensitizing AMPA receptors, although to a limited extent, since AMPA receptor activation triggers mechanisms that lead to nNOS proteolysis by calpains, preventing a further contribution of NO to the neurotoxic process.  相似文献   

18.
《Life sciences》1996,59(12):PL199-PL205
Ibogaine, an indole containing alkaloid, has been shown to reduce the rate of injection of morphine and cocaine in self-administration protocols. Since morphine- and cocaine-induced modulation of dopamine release is impulse dependent and essential for their reinforcing effects, disruption of dopamine neuronal activity by ibogaine could explain its purported ‘antiaddictive’ properties. Therefore, the present study was designed to determine: (1) the acute effects of ibogaine on the activity of VTA dopamine neurons, and (2) whether ibogaine pretreatment causes a persistent modification of the dopamine neuronal response to morphine and cocaine. Extracellular recordings in anesthetized animals found that intravenous ibogaine markedly excited VTA dopamine neuronal firing. However, ibogaine pretreatment (6–8 hr and 19 hr before) failed to alter either the spontaneous activity of VTA neurons, or the response of these dopamine neurons to morphine or cocaine. Thus, ibogaine's excitatory effect on VTA neurons is not longlasting nor does it persistently alter cocaine- or morphine-induced changes in dopamine neuron impulse activity. Therefore, other mechanisms must be explored to account for the proposed antiaddictive properties of ibogaine.  相似文献   

19.
We examined whether neurons in the midbrain ventral tegmental area (VTA) play a role in generating central command responsible for autonomic control of the cardiovascular system in anesthetized rats and unanesthetized, decerebrated rats with muscle paralysis. Small volumes (60 nl) of an N-methyl-D-aspartate receptor agonist (L-homocysteic acid) and a GABAergic receptor antagonist (bicuculline) were injected into the VTA and substantia nigra (SN). In anesthetized rats, L-homocysteic acid into the VTA induced short-lasting increases in renal sympathetic nerve activity (RSNA; 66 ± 21%), mean arterial pressure (MAP; 5 ± 2 mmHg), and heart rate (HR; 7 ± 2 beats/min), whereas bicuculline into the VTA produced long-lasting increases in RSNA (130 ± 45%), MAP (26 ± 2 mmHg), and HR (66 ± 6 beats/min). Bicuculline into the VTA increased blood flow and vascular conductance of the hindlimb triceps surae muscle, suggesting skeletal muscle vasodilatation. However, neither drug injected into the SN affected all variables. Renal sympathetic nerve and cardiovascular responses to chemical stimulation of the VTA were not essentially affected by decerebration at the premammillary-precollicular level, indicating that the ascending projection to the forebrain from the VTA was not responsible for evoking the sympathetic and cardiovascular responses. Furthermore, bicuculline into the VTA in decerebrate rats produced long-lasting rhythmic bursts of RSNA and tibial motor nerve discharge, which occurred in good synchrony. It is likely that the activation of neurons in the VTA is capable of eliciting synchronized stimulation of the renal sympathetic and tibial motor nerves without any muscular feedback signal.  相似文献   

20.
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 μM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 μM), or the serotonin transporter inhibitor, fluoxetine (10 μM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na+ channel blockade by 1 μM tetrototoxin, removal of Ca2+ from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 μM) or tetrabenazine (10 and 100 μM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 μM) and CNQX (20 and 50 μM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号