首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pretreatment of intact NG108-15 cells with pertussis toxin suppresses opioid inhibition of cyclic AMP accumulation mediated by the inhibitory guanine nucleotide-binding regulatory protein, Ni, which apparently also mediates the inhibitory nucleotide effects on opioid against binding. The toxin treatment had no effect on opioid agonist binding measured in NG108-15 cell membranes without sodium present. However, the toxin potentiated the inhibitory effect of sodium on agonist binding, leading to an agonist-specific reduction of opioid receptor affinity in the presence of sodium in the binding reaction. The potency of the stable GTP analog, GTP gamma S, to reduce agonist binding in the presence of sodium was little changed in membranes prepared from pertussis toxin-treated cells compared to control membranes, whereas the potency of the stable GDP analog, GDP beta S, was magnified. The data indicate that ADP-ribosylation of Ni by pertussis toxin potentiates sodium regulation of opioid agonist binding and that the communication between Ni and opioid receptors is not lost by the covalent modification of Ni.  相似文献   

2.
We investigated the mechanisms of receptor-mediated stimulation of high-affinity GTPase activity in response to opioid peptides and to foetal-calf serum in membranes of the neuroblastoma X glioma hybrid cell line NG108-15. Increases in GTPase activity in response to both of these ligands was abolished by prior exposure of the cells to pertussis toxin. Pertussis toxin in the presence of [32P]NAD+ catalysed incorporation of radioactivity into a broad band of approx. 40 kDa in membranes prepared from untreated, but not from pertussis-toxin-pretreated, cells. Additivity studies indicated that the responses to opioid peptides and to foetal-calf serum were mediated by separate guanine-nucleotide-binding proteins (G-proteins). Whereas opioid peptides produced an inhibition of adenylate cyclase in membranes of untreated cells, foetal-calf serum did not. Affinity-purified antibodies which recognize the C-terminus of the inhibitory G-protein identified a 40 kDa polypeptide in membranes of NG108-15 cells. These antibodies attenuated opioid-stimulated high-affinity GTPase activity, but did not markedly affect the response to foetal-calf serum. We conclude that receptors for the opioid peptides function via the inhibitory G-protein (Gi), whereas foetal-calf serum activates a second pertussis-toxin-sensitive G-protein, which has a C-terminal sequence significantly different from that of Gi.  相似文献   

3.
The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex. The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.  相似文献   

4.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

5.
Opioid receptors of NG 108-15 cell membranes are distributed in two membrane fractions sedimenting at 20,000 g (P2) and 200,000 g(P3). The number of receptors is identical in P2 and P3, but in P2 all sites are present in one high-affinity state (2 nM), whereas in P3 60% of these receptors display lower affinity (150 nM). Upon addition of GTP or pretreatment with pertussis toxin, 80% of the sites exist in low affinity in both P2 and P3. Therefore, the effect of GTP and pertussis toxin on agonist binding appears to be smaller in P2 than in P3. In contrast, sodium inhibits agonist binding in P2 and P3 to the same extent and with identical potency. Opioid-mediated stimulation of GTPase is much greater in P2 than in P3, whereas inhibition of adenylate cyclase does not differ in the two fractions. Using site-specific antibodies and pertussis toxin-catalyzed ADP-ribosylation, we found that the amount of G proteins in P3 is only 30-50% of that in P2. Treatment of intact cells with the hydrophilic protein-modifying agent sulfosuccinimido-biotin results in biotinylation of proteins from both fractions and in a similar reduction of opioid binding in P2 and P3. Likewise, exposure of intact cells to the alkylating opioid antagonist, chlornaltrexamine, produces identical degrees of receptor inactivation in P2 and P3. The rate of in vivo pertussis toxin-mediated modification of G proteins is not different in the two fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The anti-helminthic drug suramin inhibited the basal high-affinity GTPase activity of both C6 BU1 glioma and NG 108-15 neuroblastoma x glioma hybrid-cell membranes with an IC50 (concentration causing half-maximal inhibition) value close to 30 micrograms/ml. This effect was shown to occur via a non-competitive mechanism in which the binding affinity of the G-proteins for GTP was not altered, but the maximal velocity of the subsequent hydrolysis was reduced. In NG 108-15 membranes, both opioid peptides and foetal-calf serum stimulated high-affinity GTPase activity in a pertussis-toxin-sensitive manner. These effects have previously been shown to be mediated by different G-proteins [McKenzie, Kelly, Unson, Spiegel & Milligan (1988) Biochem. J. 249, 653-659]. Suramin completely prevented the opioid-peptide-stimulated increase in GTP hydrolysis, but did not prevent the opioid peptide from binding to its receptor. Suramin, however, did not block the foetal-calf-serum-stimulated GTPase response. This selective action of suramin provides further evidence for distinct roles for two separate pertussis-toxin-sensitive G-proteins in signal transduction in NG 108-15 membranes and provides the first evidence for a selective effect of a drug on the functions of different G-proteins.  相似文献   

7.
GTP hydrolysis in Dictyostelium discoideum membranes is caused by a low (Km greater than 1 mM) and a high affinity (Km 6.5 microM) GTPase. cAMP enhances GTP hydrolysis apparently by increasing the affinity of the high affinity GTPase (stimulated Km 4.5 microM); the low affinity GTPase was not affected by cAMP. Stimulation of GTP hydrolysis by cAMP was maximal at early time points and declined thereafter. A half-maximal stimulation of GTPase occurred at 3 microM cAMP and the specificity of cAMP derivatives for stimulation of GTPase activity showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Treatment of D. discoideum cells with pertussis toxin decreased the cAMP-induced stimulation of GTPase from 42 +/- 6% in control cells to 17 +/- 9% in pertussis toxin-treated cells. These results suggest that the interaction of cAMP with its surface receptor leads to stimulation of high affinity GTPase in D. discoideum membranes. At least one of those enzymes may represent a guanine nucleotide-binding protein sensitive to pertussis toxin.  相似文献   

8.
Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells   总被引:22,自引:0,他引:22  
In neuroblastoma-glioma (NG108-15) hybrid cells, opiates inhibit adenylate cyclase and stimulate a low Km GTPase. It has been postulated that the stimulation of GTPase plays a role in opiate inhibition of adenylate cyclase (Koski, G., and Klee, W. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4185-4189). Treatment of NG108-15 cells with pertussis toxin attenuates receptor-mediated inhibition of adenylate cyclase. The toxin acts by catalyzing the ADP-ribosylation of a 41,000-dalton substrate believed to be a part of the receptor-adenylate cyclase complex. We have found that toxin treatment of NG108-15 results in inhibition of the opiate-stimulated GTPase. The concentration of toxin required for inhibition of this GTPase was similar to that needed for both attenuation of opiate inhibition of adenylate cyclase and ADP ribosylation of the 41,000-dalton substrate. Inhibition of the opiate-induced GTPase by pertussis toxin in isolated membranes required NAD, consistent with the hypothesis that this effect of the toxin resulted from ADP ribosylation of a protein component of the system. Since the opiate-stimulated GTPase is believed to play a role in the receptor-mediated decrease in adenylate cyclase activity, inhibition of this GTPase may be an important part of the mechanism by which the toxin interferes with opiate action on adenylate cyclase.  相似文献   

9.
Thrombin inhibits adenylate cyclase and stimulates GTP hydrolysis by high-affinity GTPase(s) in membranes of human platelets at almost identical concentrations. Both of these thrombin actions are similar to those observed with agonist-activated alpha 2-adrenoceptors coupling to the inhibitory guanine nucleotide-binding protein N1. However, stimulation of GTP hydrolysis caused by adrenaline (alpha 2-adrenoceptor agonist) and by thrombin at maximally effective concentrations was partially additive, whereas with regard to adenylate cyclase inhibition no additive response was observed. Furthermore, treatment of platelet membranes with pertussis toxin, which inactivates Ni and largely abolishes thrombin- and adrenaline-induced adenylate cyclase inhibition and adrenaline-induced GTPase stimulation, decreased the thrombin-induced stimulation of GTP hydrolysis by only about 30%. Additionally, the thiol reagent N-ethylmalemide (NEM) at rather low concentrations abolished thrombin- and adrenaline-induced stimulation of GTP hydrolysis was decreased by only 30-40% by treatment of platelet membranes with even high concentrations of NEM. Treatment with cholera toxin, which inhibits GTPase activity of the Ns (stimulatory guanine nucleotide-binding) protein, has no effect on thrombin-stimulated GTP hydrolysis. The data suggest that thrombin interaction with its receptor sites in platelet membranes leads to stimulation of two GTP-hydrolysing enzymes. One of these enzymes is apparently Ni and is also activated by agonist-activated alpha 2-adrenoceptors and is inactivated by pertussis toxin and NEM treatment. The other GTP-hydrolysing enzyme activated by thrombin may represent a guanine nucleotide-binding protein apparently involved in the coupling of thrombin receptors to the phosphoinositide phosphodiesterase.  相似文献   

10.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

11.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

12.
Stimulation of NG115-401L neuronal cells with bradykinin produces a dose-dependent increase in inositol phosphate production which is not blocked, rather slightly increased, after treatment with pertussis toxin. Nevertheless, pertussis toxin stimulates ADP-ribosylation of a 41K membrane protein, and blocks opioid receptor-mediated inhibition of stimulated cAMP production in these cells. These results suggest that bradykinin responses in the NG115-401L cells are pertussis-insensitive, unlike bradykinin responses reported in other neuronal cell lines.  相似文献   

13.
NG108-15 cells were pretreated with the opioid peptide [D-Ala2, D-Leu5]enkephalin and the opioid-dependent low Km GTPase was assayed in membranes. Pretreatment resulted in a small decrease in basal GTPase activity and led to a concentration-dependent reduction in opioid-mediated stimulation of the enzyme. These effects were observed whether the agonist was present or absent throughout all the experimental procedures, but, in the second condition, the desensitization was smaller. The addition of naloxone had no effect on basal GTPase activity, in either control or pretreated cell membranes. Both Na+ and Mg++ were required for the opioid-induced stimulation of the GTPase. Mg++ enhanced basal enzymatic activity in controls, whereas in membranes from pretreated cells, it produced an inhibition. Thus, desensitization of the opioid-dependent low Km GTPase occurs upon chronic opioid treatment and a Mg++ regulatory site might be altered in the course of this process.  相似文献   

14.
Abstract: We have compared the characteristics of receptors for nucleotide analogues and the involvement of phospholipase C (PLC) in the effector mechanism in NG108-15 neuroblastoma and C6 glioma cells. The relative potency of these analogues to stimulate inositol phosphate (IP) formation is UTP > UDP ? 2-methylthio-ATP (2-MeSATP), GTP > ATP, CTP > ADP > UMP in NG108-15 cells and ATP > UTP > ADP > GTP > UDP ? 2Me-SATP, CTP, UMP in C6 glioma cells. α,β-Methylene-ATP, β,γ-methylene-ATP, AMP, and adenosine had little or no effect in both types of cells. The EC50 values were 3 and 106 µM for UTP in NG108-15 and C6 glioma cells, respectively. The EC50 value for ATP in C6 glioma cells was 43 µM. 2-MeSATP was threefold more potent than ATP in NG108-15 cells but had little effect in C6 glioma cells at 1 mM. In NCB-20 cells, a similar rank order of potency to that found in NG108-15 cells, i.e., UTP ? GTP > ATP > CTP, was observed. In both NG108-15 and C6 glioma cells, preincubation with ATP or UTP caused a pronounced cross-desensitization of subsequent nucleotide-stimulated IP production. ATP and UTP displayed no additivity in terms of IP formation at maximally effective concentrations. In contrast, endothelin-1, bradykinin, and NaF interacted in an additive manner with either nucleotide in stimulating PI hydrolysis. Pretreatment with pertussis toxin did not affect ATP-, UTP-, and GTP-stimulated IP generation in these cells, indicating that nucleotide receptors coupled to PLC by a pertussis toxin-resistant G protein in both cell types. Short-term treatment of the cells with protein kinase C (PKC) activators [phorbol 12-myristate 13-acetate (PMA) and octylindolactam V] produced a dose-dependent inhibition of ATP- and UTP-induced IP formation with a greater extent and higher susceptibility in C6 glioma cells than in NG108-15 cells. Furthermore, a 24-h exposure of the cells to PMA resulted in an obvious attenuation of nucleotide-induced IP formation in C6 glioma cells but failed to change the response in NG108-15 cells. These results suggest that distinct nucleotide receptors that respond to ATP and UTP with different selectivity exist in NG108-15 and C6 glioma cells. These heterogeneous nucleotide receptors coupled to PLC undergo discriminative modulation by PKC. NG108-15 and NCB-20 neuroblastoma are two cell lines that showed the highest specificity to extracellular UTP rather than ATP among the nucleotide receptors so far studied in various cells, suggesting the presence of a pyrimidine receptor in these cells.  相似文献   

15.
Parameters of ligand binding, stimulation of low-Km GTPase, and inhibition of adenylate cyclase were determined in intact human neuroblastoma SH-SY5Y cells and in their isolated membranes, both suspended in identical physiological buffer medium. In cells, the mu-selective opioid agonist [3H]Tyr-D-Ala-Gly(Me)Phe-Gly-ol ([3H]DAMGO) bound to two populations of sites with KD values of 3.9 and 160 nM, with less than 10% of the sites in the high-affinity state. Both sites were also detected at 4 degrees C and were displaced by various opioids, including quaternary naltrexone. The opioid antagonist [3H]naltrexone bound to a single population of sites, and in cells treated with pertussis toxin the biphasic displacement of [3H]naltrexone by DAMGO became monophasic with only low-affinity binding present. The toxin specifically reduced high-affinity agonist binding but had no effect on the binding of [3H]naltrexone. In isolated membranes, both agonist and antagonist bound to a single population of receptor sites with affinities similar to that of the high-affinity binding component in cells. Addition of GTP to membranes reduced the Bmax for [3H]DAMGO by 87% and induced a linear ligand binding component; a low-affinity binding site, however, could not be saturated. Compared with results obtained with membranes suspended in Tris buffer, agonist binding, including both receptor density and affinity, in the physiological medium was attenuated. The results suggest that high-affinity opioid agonist binding represents the ligand-receptor-guanine nucleotide binding protein (G protein) complex present in cells at low density due to modulation by endogenous GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
beta-Adrenergic receptor stimulation of adenylyl cyclase involves the activation of a GTP-binding regulatory protein (G-protein, termed here Gs). Inactivation of this G-protein is associated with the hydrolysis of bound GTP by an intrinsic high affinity GTPase activity. In the present study, we have characterized the GTPase activity in a Gs-enriched rat parotid gland membrane fraction. Two GTPase activities were resolved; a high affinity GTPase activity displaying Michaelis-Menten kinetics with increasing concentrations of GTP, and a low affinity GTPase activity which increased linearly with GTP concentrations up to 10 mM. The beta-adrenergic agonist isoproterenol (10 microM) increased the Vmax of the high affinity GTPase component approx. 50% from 90 to 140 pmol/mg protein per min, but did not change its Km value (approximately 450 nM). Isoproterenol also stimulated adenylyl cyclase activity in parotid membranes both in the absence or presence of GTP. In the presence of a non-hydrolyzable GTP analogue, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), isoproterenol increased cAMP formation to the same extent as that observed with AlF-4. Cholera toxin treatment of parotid membranes led to the ADP-ribosylation of two proteins (approximately 45 and 51 kDa). Cholera toxin also specifically decreased the high affinity GTPase activity in membranes and increased cAMP formation induced by GTP in the absence or the presence of isoproterenol. These data demonstrate that the high affinity GTPase characterized here is the 'turn-off' step for the adenylyl cyclase activation seen following beta-adrenergic stimulation of rat parotid glands.  相似文献   

17.
Using modifications of the methods of Bokoch et al. (Bokoch, G.M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984) J. Biol. Chem. 259, 3560-3567) and Codina et al. (Codina, J., Hildebrandt, J. D., Sekura, R. D., Birnbaumer, M., Bryan, J., Manclark, C. R., Iyengar, R., and Birnbaumer, L. (1984) J. Biol. Chem. 259, 5871-5886), we have purified a pertussis toxin substrate with the expected characteristics of the inhibitory guanine nucleotide-binding protein (Ni) essentially to homogeneity. The purified protein consists of 3 subunits of Mr 40,000, 35,000, and less than 10,000. The Mr 40,000 band is found, upon close examination, to consist of a poorly resolved doublet. Starting with the membranes from 1,320 g of bovine forebrain we purified the protein some 100-fold with approximately 20% yield to obtain 13 mg of a greater than 95% pure protein. Chromatography on octyl-Sepharose provided efficient separation of Ni from Ns (the stimulatory guanine nucleotide-binding protein). Analytical ultracentrifugation indicates an Mr of 82,000 and a sedimentation coefficient S20,w of 5.1. The protein is able to restore opiate-mediated inhibition of adenylate cyclase to membranes prepared from NG 108-15 cells which had been treated with pertussis toxin. Bovine brain Ni has the enzymatic properties of a low Km GTPase with a turnover number of 0.3 and affinities for nucleotides in the order GppNHp greater than or equal to GTP greater than or equal to GDP much greater than ATP, CTP, UTP, and GMP. Na+ specifically stimulates the GTPase and low concentrations of Mg2+ (less than 50 microM) are inhibitory. Some Mg2+ is apparently necessary because EDTA, but not EGTA, abolishes the GTPase activity.  相似文献   

18.
Amounts of the guanine nucleotide binding regulatory proteins which are also pertussis toxin substrates (such as Ni and No) were measured in rat glioma, C6BU-1, cells and in neuroblastoma X glioma, NG108-15, hybrid cells. Measurements were performed both by quantitating pertussis toxin catalyzed ADP-ribosylation and by quantitative immunoblotting with affinity purified antibodies specific for Ni or No. The amounts of pertussis toxin substrate in C6 and NG108-15 cells are 7.5 and 0.6 pmol/mg membrane protein, respectively. These levels are minimum values and higher estimates of the total amounts of N proteins in the two cells are obtained by quantitative immunoblot analysis of the beta-subunit common to all N proteins. Immunoblots with specific antibodies show that NG108-15 cells contain 3.8 pmol/mg of No and detectable but small (less than 0.1 pmol/mg) amounts of Ni. In contrast, C6 cell membranes contain no detectable No and only 0.14 pmol/mg Ni. Thus, C6 cells contain large amounts of a pertussis toxin substrate which is neither Ni nor No.  相似文献   

19.
The peptides bradykinin and kallidin are released in response to noxious stimuli and mediate various physiological effects, including a direct stimulation of nociceptive afferent neurones. The nature of the receptor molecules through which these ligands act is presently unknown. We synthesised an iodinatable photoaffinity probe, N epsilon-4-azidosalicylylkallidin, and used it in an attempt to identify candidate bradykinin receptors on the NG108-15 neuroblastoma X glioma hybrid cell line. The ligand bound in subdued light to a particulate fraction of NG108-15 tumours and could be displaced by bradykinin with an IC50 of 0.33 nM. In a physiological assay, it behaved as an agonist equipotent with bradykinin. Gel analysis of the labelled products after photolysis of the iodinated ligand in the presence of NG108-15 cells or tumour membranes revealed bradykinin-blockable labelling of a glycoprotein with an Mr of 166,000. The probe was also able to label purified commercial angiotensin converting enzyme. The band labelled in NG108-15 cells was immunoprecipitable with a polyclonal antiserum to angiotensin converting enzyme, an enzyme shown to be present in low amounts in these preparations by direct binding using the iodinatable specific ligand MK351A.  相似文献   

20.
Phosphoinositide hydrolysis was studied in neurohybrid NCB-20 cells prelabeled with myo-[3H]inositol. Among nearly 20 neurotransmitters and neuromodulators examined, only bradykinin, carbachol, and histamine significantly increased the accumulation of [3H]inositol monophosphate (IP1) in the presence of lithium. The EC50 of bradykinin was 20 nM and the saturating concentration was approximately 1 microM. The bradykinin response was robust (10-fold) and was potently and selectively blocked by a bradykinin antagonist, B 4881 [D-Arg-(Hyp3, Thi, D-Phe)-bradykinin], with a Ki of 10 nM. This effect of bradykinin appeared to be additive to that mediated by activation of muscarinic cholinergic and histamine H1 receptors. The accumulation induced by bradykinin or carbachol was dependent on the presence of calcium in the incubation medium; less than twofold stimulation was observed in the absence of exogenous calcium. Bradykinin-induced [3H]IP1 accumulation required high concentration of lithium to elicit its maximal stimulation; the concentration of lithium required for half maximal effect was about 13 mM, similar to the value reported previously for carbachol-induced accumulation in the same cell line. In contrast, using related neurohybrid NG108-15 cells, bradykinin-induced [3H]IP1 accumulation was found to require much less lithium. IN the presence of lithium, bradykinin also evoked a transient increase in the production of [3H]-inositol bis- and trisphosphate. Basal and bradykinin-induced phosphoinositide breakdown was inhibited by 4 beta-phorbol 12,13-dibutyrate, but was unaffected by the biologically inactive 4 beta-phorbol. Pretreatment of cells with pertussis toxin induced only about 30% loss of the bradykinin-induced [3H]IP1 accumulation, without affecting basal activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号