首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LamB protein is normally required for the uptake of maltodextrins. Starting with a LamB- OmpF- strain, we have isolated mutants that will grow on maltodextrins. The mutation conferring the Dex+ phenotype in the majority of these mutants has been mapped to the ompC locus. These mutants, unlike LamB- OmpF- strains, grew on maltotriose and maltotetraose, but not on maltopentaose, and showed a significantly higher rate of [14C]maltose uptake than the parent strain did. In addition, these mutants showed increased sensitivity to certain beta-lactam antibiotics and sodium dodecyl sulfate, but did not exhibit an increase in sensitivity to other antibiotics and detergents. The nucleotide sequence of these mutants has been determined. In all cases, residue 74 (arginine) of the mature OmpC protein was affected. The results suggest that this region of the OmpC protein is involved in the pore domain and that the alterations lead to an increased pore size.  相似文献   

2.
We describe the isolation and characterization of mutations in ompF that alter the pore properties of the OmpF porin. The selection makes use of the fact that maltodextrins larger than maltotriose are too large to diffuse through the normal OmpF pore. By demanding growth on maltodextrins (Dex+) in the absence of the LamB protein, which is normally required for the uptake of these large sugars, we are able to obtain ompF mutations. These include transversions, transitions and small deletions. We obtained almost exclusively ompF mutations in spite of the fact that analogous alterations in ompC can result in similar phenotypes. Fifteen independent point mutations identify residues R42, R82, D113 and R132 of the mature peptide as important in pore function. The alterations result in uncharged amino acids being substituted for charged amino acids. Growth tests, antibiotic sensitivities and rates of [14C]maltose uptake suggest that the alterations result in an increased pore size. Small deletions of six to 15 amino acid residues in the region between A108 and V133 of mature OmpF dramatically alter outer membrane permeability to hydrophobic antibiotics and detergents as well as conferring a Dex+ phenotype. We suggest that these mutations affect both the pore function and interactions with other outer membrane components. A model of OmpF protein structure based on general rules for folding membrane proteins and these mutations is presented.  相似文献   

3.
Assembly-defective OmpC mutants of Escherichia coli K-12.   总被引:1,自引:0,他引:1       下载免费PDF全文
X Xiong  J N Deeter    R Misra 《Journal of bacteriology》1996,178(4):1213-1215
Novel ompC(Dex) alleles were utilized to isolate mutants defective in OmpC biogenesis. These ompC(Dex) alleles also conferred sensitivity to sodium dodecyl sulfate (SDS), which permitted the isolation of SDS-resistant and OmpC-specific phage-resistant mutants that remained Dex+. Many mutants acquired resistance against these lethal agents by lowering the OmpC level present in the outer membrane. In the majority of these mutants, a defect in the assembly (metastable to stable trimer formation) was responsible for lowering OmpC levels. The assembly defects in various mutant OmpC proteins were caused by single-amino-acid substitutions involving the G-39, G-42, G-223, G-224, Q-240, G-251, and G-282 residues of the mature protein. This assembly defect was correctable by an assembly suppressor allele, asmA3. In addition, we investigated one novel OmpC mutant in which an assembly defect was caused by a disulfide bond formation between two nonnative cysteine residues. The assembly defect was fully corrected in a genetic background in which the cell's ability to form disulfide bonds was compromised. The assembly defect of the two-cysteine OmpC protein was also mended by asmA3, whose suppressive effect was not achieved by preventing disulfide bond formation in the mutant OmpC protein.  相似文献   

4.
5.
Mutations at several different chromosomal locations affect expression of the major outer membrane porin proteins (OmpF and OmpC) of Escherichia coli K12. Those that map at 21 and 47 minutes define the structural genes for OmpF and OmpC, respectively. A third locus, ompB, is defined by mutations that map at 74 minutes. The ompB locus contains two genes whose products regulate the relative amounts of ompF and ompC expression. One of these genes, ompR, encodes a positive regulatory protein that interacts at the ompF and ompC promoters. Mutations in ompR exhibit an OmpF- OmpC- or an OmpF+ OmpC- phenotype. The product of the second gene, envZ, affects regulation of the porin proteins in an unknown manner. Previously isolated mutations in envZ exhibit an OmpF- OmpC+ phenotype and also have pleiotropic effects on other exported proteins. In the presence of local anaesthetics such as procaine, wild-type strains exhibit properties similar to these envZ mutants, i.e. OmpF- OmpC+. Using ompF-lac fusion strains, we have exploited this procaine effect to isolate two new classes of envZ mutations. One of these classes exhibits an OmpF+ OmpC- phenotype. The other allows expression of both OmpF and OmpC but alters the relative amounts found under various growth conditions. Like previously isolated envZ mutations, these also affect regulation of other exported proteins, such as lambda receptor. These results permit a more detailed analysis of the omp regulon and they may shed light on one of the mechanisms by which local anaesthetics exert their effect.  相似文献   

6.
The DNA sequence of the ompC gene which encodes one of the outer membrane porins has been determined. The gene appears to encode a secretory precursor of OmpC protein consisting of a total of 367 amino acid residues with a signal peptide of 21 amino acid residues at its NH2-terminal end. The 5' end noncoding region including the promoter of the ompC gene is extremely [A-T]-rich, and the codon usage in the ompC gene is unusual as are those in genes for other abundant outer membrane proteins. The promoter sequence of the ompC gene was compared with that of the ompF gene, both of which are controlled by the osmoregulatory operon, ompB. The deduced amino acid sequence of the OmpC protein showed extensive homology with that of the other porins (OmpF and PhoE proteins). The homology in the primary amino acid sequences, as well as the coding DNA sequences among the porins, indicates that the structural genes for the three porins evolved from a common ancestral gene. Comparison of the amino acid sequences among the OmpC, OmpF, and PhoE porins will be discussed with regard to structure and function.  相似文献   

7.
The genes ompC and phoE of Escherichia coli K-12 encode outer membrane pore proteins that are very homologous. To study the structure-function relationship of these proteins, we have constructed a series of ompC-phoE hybrid genes in which the DNA encoding part of one protein is replaced by the corresponding part of the other gene. These hybrid genes were easily obtained by using in vivo recombination. The fusion sites in the hybrid genes were localized by restriction enzyme mapping. The hybrid gene products were normally expressed and they were characterized with respect to functions and properties in which the native OmpC and PhoE proteins differ, such as pore characteristics, the receptor activity for phages and the binding of specific antibodies. Three regions within the N-terminal 130 amino acids were localized which determine pore characteristics and a segment between residues 75 and 110 contains amino acids which determine specificity for PhoE phages. A major cell surface-exposed region is located between residues 142 and 267. This region contains residues which are required for the binding of monoclonal antibodies directed against the cell surface-exposed part of PhoE and residues which determine specificity for OmpC phages.  相似文献   

8.
Escherichia coli mutants with an altered sensitivity to cecropin D.   总被引:2,自引:0,他引:2  
Cecropins are a family of small, basic antibacterial polypeptides which can be isolated from pupae of immunized Lepidoptera. They are active against both gram-negative and gram-positive bacteria. We studied a mutant of Escherichia coli, strain SB1004, which is more sensitive to cecropin D than is the parental strain. The mutant was selected as resistant to a host range mutant of a Serratia marcescens phage. When the protein composition of the outer membrane was examined, strain SB1004 and some other phage-resistant mutants were found to be deficient in the OmpC protein. It was concluded that the OmpC protein is the receptor of the phage. Strain SB1004 was found to differ from other ompC mutants in being especially sensitive to hydrophobic antibiotics and to cecropin D. Furthermore, strain SB1004 has a tendency for spontaneous autolysis. A genetic analysis showed the mutations in strain SB1004 and a suppressor mutant to map in the ompC region. The activity of cecropin D against different strains of E. coli was specifically enhanced when divalent cations were absent. No such effect was found with cecropins A and B, which are less hydrophobic than the D form.  相似文献   

9.
10.
The role played by alpha-helix 4 of the Bacillus thuringiensis toxin Cry1Aa in pore formation was investigated by individually replacing each of its charged residues with either a neutral or an oppositely charged amino acid by using site-directed mutagenesis. The majority of the resulting mutant proteins were considerably less toxic to Manduca sexta larvae than Cry1Aa. Most mutants also had a considerably reduced ability to form pores in midgut brush border membrane vesicles isolated from this insect, with the notable exception of those with alterations at amino acid position 127 (R127N and R127E), located near the N-terminal end of the helix. Introducing a negatively charged amino acid near the C-terminal end of the helix (T142D and T143D), a region normally devoid of charged residues, completely abolished pore formation. For each mutant that retained detectable pore-forming activity, reduced membrane permeability to KCl was accompanied by an approximately equivalent reduction in permeability to N-methyl-D-glucamine hydrochloride, potassium gluconate, sucrose, and raffinose and by a reduced rate of pore formation. These results indicate that the main effect of the mutations was to decrease the toxin's ability to form pores. They provide further evidence that alpha-helix 4 plays a crucial role in the mechanism of pore formation.  相似文献   

11.
Phage attachment sites on bacterial cell surfaces are provided by the exposed regions of outer membrane proteins and lipopolysaccharide (LPS). We have identified surface exposed residues of OmpC that are important for phage binding. This was accomplished by employing a genetic scheme in which two simultaneous selections enriched for ompC mutants defective in phage attachment, but retained functional channels. Mutational alterations were clustered in three regions of the OmpC protein. These regions also showed the greatest divergence from the analogous regions of the highly related OmpF and PhoE proteins. The majority of alterations (8 out of 11) occurred in a region of OmpC that is predicted to form a large exterior loop (loop 4). Interestingly, while the removal of this loop prevented phage binding, the deletion conferred enhanced channel activities.   Another type of phage-resistant mutants synthesized defective LPS molecules. Biochemical analysis of mutant LPS revealed it to be of the Re-type LPS, lacking the heptose moieties from the LPS inner core. As a result of this LPS defect, many outer membrane proteins were present in somewhat reduced levels. The phage resistance seen in these mutants could be a result of both the presence of defective LPS and reduced OmpC levels.  相似文献   

12.
An ompB strain of Escherichia coli K-12 lacking major outer membrane proteins OmpC and OmpF was used to isolate a pair of mutants that have restored the ability to synthesize either OmpC or OmpF protein. These mutants were found to produce the respective proteins constitutively under the several conditions where the synthesis in the wild-type strain was markedly repressed; namely, in the absence of the ompB gene function, under restrictive medium conditions, or upon lysogenization with phage PA-2. The mutations ompCp1 and ompFp9 responsible for such synthesis were shown to be located in the close vicinity of the corresponding structural genes, ompC and ompF. Moreover, the mutations affect the expression of these genes in a cis-dominant fashion. Taken together with other evidence, it was suggested that ompCp1 and ompFp9 represent regulatory site mutations occurring at the promoter regions of ompC and ompF respectively. Relevance of these findings to the genetic control of outer membrane protein synthesis is discussed.  相似文献   

13.
Escherichia coli K-12 strain PLB3255 contains a mutation in the ompF gene that results in a 15 amino acid deletion in the porin protein. The mutation (dex) appears to increase the OmpF channel size, allowing the PLB3255 cells to grow on maltodextrins in the absence of a functional maltoporin. Porin isolated from strain PLB3255, which contains a wild-type ompC gene, was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and shown to contain 50-60% trimer aggregates and 35-40% of a 50-kDa "dimer". When the porin isolate was heated to 100 degrees C and separated on SDS gels containing 8 M urea, both the trimer and the "dimer" were recovered in a single band at 36 kDa that corresponded in mobility to wild-type OmpC porin. An analysis of the temperature stability of the isolate showed that the OmpC "dimer" was less stable and denatured at 66 degrees C compared to 81 degrees C for the trimer. To separate these aggregates, the unheated porin was suspended in 30% SDS, applied to a Sephadex G-200 gel filtration column, and eluted with 0.5% sodium deoxycholate. Two peaks were recovered containing separated trimers and "dimers". Circular dichroism spectra of isolated dimers and trimers indicated similar amounts of beta-structure. The isolated dimers and trimers were reconstituted into artificial membranes. Electrical conductance across planar bilayer lipid membranes and liposome swelling assays showed that the two isolates had similar channel-forming activity. Four other ompF deletion mutants of the same phenotype were also shown to produce 50-kDa OmpC porin "dimers".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To breed resistance to an assortment of infectious phages, continuous cultures of Escherichia coli JM109 grown in a chemostat were exposed to phage mixtures prepared from sewage influent. Four sequential chemostat-grown cultures were each infected with a different phage mixture. At the end of a chemostat run, one phage-resistant colony was isolated and used to inoculate the subsequent culture. This process was repeated, and increased phage resistance of the input bacterial strain resulted from the successive challenges with different phage cocktails. Multiple mutations apparently accumulated progressively. A mutant isolated at the end of the four runs, designated D198, showed resistance to 38 of 40 phages that infect the parent strain, JM109. D198 produced less outer membrane protein C (OmpC) than JM109. However, restoration of the OmpC protein by plasmid-mediated complementation did not completely restore the susceptibility of D198 to the 38 phages. Therefore, alterations beyond the level of OmpC protein production contribute to the phage resistance of D198. PCR-based genetic analysis revealed that D198 has a genome that is 209 kbp (about 200 genes) smaller than JM109. The deletion includes the chromosomal section from ompC to wbbL that encodes the rhamnosyl transferase involved in lipopolysaccharide biosynthesis. Strains D198 and JM109 were comparable in their growth characteristics and their abilities to express a recombinant protein.  相似文献   

15.
On the basis of structural homology calculations, we previously showed that lecithin:cholesterol acyltransferase (LCAT), like lipases, belongs to the alpha/beta hydrolase fold family. As there is higher sequence conservation in the N-terminal region of LCAT, we investigated the contribution of the N- and C-terminal conserved basic residues to the catalytic activity of this enzyme. Most basic, and some acidic residues, conserved among LCAT proteins from different species, were mutated in the N-terminal (residues 1;-210) and C-terminal (residues 211;-416) regions of LCAT. Measurements of LCAT-specific activity on a monomeric substrate, on low density lipoprotein (LDL), and on reconstituted high density lipoprotein (rHDL) showed that mutations of N-terminal conserved basic residues affect LCAT activity more than those in the C-terminal region. This agrees with the highest conservation of the alpha/beta hydrolase fold and structural homology with pancreatic lipase observed for the N-terminal region, and with the location of most of the natural mutants reported for human LCAT. The structural homology between LCAT and pancreatic lipase further suggests that residues R80, R147, and D145 of LCAT might correspond to residues R37, K107, and D105 of pancreatic lipase, which form the salt bridges D105-K107 and D105-R37. Natural and engineered mutations at residues R80, D145, and R147 of LCAT are accompanied by a substantial decrease or loss of activity, suggesting that salt bridges between these residues might contribute to the structural stability of the enzyme.  相似文献   

16.
17.
Fusions to the beta-lactamase (bla) gene were employed to analyze the presence of localization information in the mature part of OmpC, a major pore-forming outer membrane protein in Escherichia coli K-12. Six translational ompC-bla gene fusions were constructed, the shortest of them containing only part of the ompC signal sequence and the largest approximately 90% of the sequence encoding mature OmpC protein. Export of the hybrid proteins to a non-cytoplasmic location was a prerequisite for ampicillin resistance. Localization of the hybrid proteins by cell fractionation and solid phase iodination of whole cells suggested that the exported hybrid proteins possibly interacted with the outer membrane in vivo. No specific sequence of the mature OmpC protein, however, was found to promote this interaction.  相似文献   

18.
19.
A novel type of osmoregulatory mutant of Escherichia coli K-12 exhibiting constitutive expression of the ompC gene was isolated and characterized at the molecular level. In this particular mutant (cec; constitutive expression of OmpC), an insertion sequence (IS-1) was found to be located at right upstream of the regulatory sequence for the ompC promoter. We demonstrate that the IS1 insertion observed in the cec mutant does not provide the ompC gene with an artificial promoter, but rather perturbs normal regulation of the ompC promoter, which is mediated by the regulatory gene, ompR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号