首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal CD4+ T cell activation requires the cooperation of multiple signaling pathways coupled to the TCR-CD3 complex and to the CD28 costimulatory molecule. In this study, we have investigated the expression of surface CXC chemokine receptor 4 (CXCR4) in enriched populations of CD4+ T PBL, stimulated with anti-CD3 and anti-CD28 mAbs, immobilized on plastic. Anti-CD3 alone induced a progressive down-regulation of surface CXCR4, accompanied by a significant decline in the entry of the HXB2 T cell line-tropic (X4-tropic) HIV-1 clone in CD4+ T cells. Of note, this effect was strictly dependent on the presence in culture of CD14+ monocytes. On the other hand, anti-CD28 alone induced a small but reproducible increase in the expression of surface CXCR4 as well as in the entry of HXB2 HIV-1 clone in resting CD4+ T cells. When the two mAbs were used in combination, anti-CD28 potently synergized with anti-CD3 in inducing the expression of CD69 activation marker and stimulating the proliferation of CD4+ T cells. On the other hand, anti-CD28 counteracted the CXCR4 down-modulation induced by anti-CD3. The latter effect was particularly evident when anti-CD28 was associated to suboptimal concentrations of anti-CD3. Because CXCR4 is the major coreceptor for the highly cytopathic X4-tropic HIV-1 strains, which preferentially replicate in proliferating CD4+ T cells, the ability of anti-CD28 to up-regulate the surface expression of CXCR4 in both resting and activated CD4+ T cells provides one relevant mechanism for the progression of HIV-1 disease.  相似文献   

2.
MicroRNAs (miRNAs) are ~22-nt small RNAs that are important regulators of mRNA turnover and translation. Recent studies have shown the importance of the miRNA pathway in HIV-1 infection, particularly in maintaining latency. Our initial in vitro studies demonstrated that HIV-1-infected HUT78 cells expressed significantly higher IL-10 levels compared with uninfected cultures. IL-10 plays an important role in the dysregulated cytotoxic T cell response to HIV-1, and in silico algorithms suggested that let-7 miRNAs target IL10 mRNA. In a time course experiment, we demonstrated that let-7 miRNAs fall rapidly following HIV-1 infection in HUT78 cells with concomitant rises in IL-10. To show a direct link between let-7 and IL-10, forced overexpression of let-7 miRNAs resulted in significantly reduced IL-10 levels, whereas inhibition of the function of these miRNAs increased IL-10. To demonstrate the relevance of these results, we focused our attention on CD4(+) T cells from uninfected healthy controls, chronic HIV-1-infected patients, and long-term nonprogressors. We characterized miRNA changes in CD4(+) T cells from these three groups and demonstrated that let-7 miRNAs were highly expressed in CD4(+) T cells from healthy controls and let-7 miRNAs were significantly decreased in chronic HIV-1 infected compared with both healthy controls and long-term nonprogressors. We describe a novel mechanism whereby IL-10 levels can be potentially modulated by changes to let-7 miRNAs. In HIV-1 infection, the decrease in let-7 miRNAs may result in an increase in IL-10 from CD4(+) T cells and provide the virus with an important survival advantage by manipulating the host immune response.  相似文献   

3.
Human immunodeficiency virus (HIV) infection results in a functional impairment of CD4(+) T cells long before a quantitative decline in circulating CD4(+) T cells is evident. The mechanism(s) responsible for this functional unresponsiveness and eventual depletion of CD4(+) T cells remains unclear. Both direct effects of cytopathic infection of CD4(+) cells and indirect effects in which uninfected "bystander" cells are functionally compromised or killed have been implicated as contributing to the immunopathogenesis of HIV infection. Because T-cell receptor engagement of major histocompatibility complex (MHC) molecules in the absence of costimulation mediated via CD28 binding to CD80 (B7-1) or CD86 (B7-2) can lead to anergy or apoptosis, we determined whether HIV type 1 (HIV-1) virions incorporated MHC class I (MHC-I), MHC-II, CD80, or CD86. Microvesicles produced from matched uninfected cells were also evaluated. HIV infection increased MHC-II expression on T- and B-cell lines, macrophages, and peripheral blood mononclear cells (PBMC) but did not significantly alter the expression of CD80 or CD86. HIV virions derived from all MHC-II-positive cell types incorporated high levels of MHC-II, and both virions and microvesicles preferentially incorporated CD86 compared to CD80. CD45, expressed at high levels on cells, was identified as a protein present at high levels on microvesicles but was not detected on HIV-1 virions. Virion-associated, host cell-derived molecules impacted the ability of noninfectious HIV virions to trigger death in freshly isolated PBMC. These results demonstrate the preferential incorporation or exclusion of host cell proteins by budding HIV-1 virions and suggest that host cell proteins present on HIV-1 virions may contribute to the overall pathogenesis of HIV-1 infection.  相似文献   

4.
5.
CD40-CD154 interaction is pivotal for cell-mediated immunity. There are contradictory reports on whether HIV-1 infection impairs CD154 induction. The interaction between CD40 and CD154 is important not only because it results in activation of APCs but also because it controls CD154 by diminishing expression of this molecule. Compared with healthy controls, CD4(+) T cells from HIV-1(+) patients had impaired induction of CD154 when T cell activation was mediated by CD40(+) APCs. In contrast, T cell activation in the absence of these cells resulted in normal CD154 expression. CD154 induction in HIV-1(+) patients and controls were similar upon blockade of CD40-CD154 binding. Defective regulation of CD154 appeared to occur downstream of the control of mRNA levels because up-regulation of CD154 mRNA was not impaired by HIV-1 infection. This work identifies CD40 as a mediator of impaired CD154 induction in HIV-1 infection and explains why this defect was not detected by studies where T cell activation was triggered independently of CD40(+) APCs. In addition, dysregulation of CD154 in HIV-1 infection likely contributes to immunodeficiency because diminished expression of CD154 induced by CD40 is of functional relevance, resulting in decreased dendritic cell maturation.  相似文献   

6.
The progressive loss of CD4+ T cell population is the hallmark of HIV-1 infection but the mechanism underlying the slow T cell decline remains unclear. Some recent studies suggested that pyroptosis, a form of programmed cell death triggered during abortive HIV infection, is associated with the release of inflammatory cytokines, which can attract more CD4+ T cells to be infected. In this paper, we developed mathematical models to study whether this mechanism can explain the time scale of CD4+ T cell decline during HIV infection. Simulations of the models showed that cytokine induced T cell movement can explain the very slow decline of CD4+ T cells within untreated patients. The long-term CD4+ T cell dynamics predicted by the models were shown to be consistent with available data from patients in Rio de Janeiro, Brazil. Highly active antiretroviral therapy has the potential to restore the CD4+ T cell population but CD4+ response depends on the effectiveness of the therapy, when the therapy is initiated, and whether there are drug sanctuary sites. The model also showed that chronic inflammation induced by pyroptosis may facilitate persistence of the HIV latent reservoir by promoting homeostatic proliferation of memory CD4+ cells. These results improve our understanding of the long-term T cell dynamics in HIV-1 infection, and support that new treatment strategies, such as the use of caspase-1 inhibitors that inhibit pyroptosis, may maintain the CD4+ T cell population and reduce the latent reservoir size.  相似文献   

7.
HIV-1 replication is associated with reduced or absent HIV-1-specific CD4+ T cell proliferation and skewing of HIV-1-specific CD4+ T cells toward an IFN-gamma-producing, CCR7- phenotype. The CCR7- T cell population is heterogeneous and can be subdivided based on the expression of CD57. Although CD57 expression on CD8+ T cells is associated with proliferation incompetence and replicative senescence, less is known about the function of CD57-expressing CD4+ T cells. In this study, the frequency, phenotype, and function of CD57+CD4+ T cells were evaluated in 25 HIV-1-infected subjects and 10 seronegative controls. CD57+CD4+ T cells were found to be proliferation incompetent, even after strong mitogen stimulation. Percentages of CD4+ T cells that expressed CD57 were significantly higher in untreated HIV-1-infected subjects than in HIV-1-seronegative donors, and CD57 expression did not normalize in subjects receiving at least 6 mo of effective antiretroviral therapy. CD57 was predominately expressed on the CCR7- fraction of the CD4+ T cell compartment and accounted for the majority of cells in the CCR7-CD45RA+ population from untreated HIV-1-infected subjects. HIV-1-specific CD4+ T cells producing only IFN-gamma had the highest expression of CD57, whereas few cells producing IL-2 alone expressed CD57. These findings further define a novel population of proliferation-incompetent CD4+ T cells that are generated in the presence of chronic Ag exposure. A better understanding of the generation and persistence of CD57+ T cells in HIV-1 infection could provide important insights into the immunopathogenesis of this disease.  相似文献   

8.
9.
10.
11.
12.
13.
Human immunodeficiency virus type 1 (HIV-1) infection of T cells and cells of the monocyte/macrophage lineage requires a specific interaction between the CD4 antigen expressed on the cell surface and the HIV-1 external envelope glycoprotein (gp120). To study the association between HIV-1 infection and modulation of cell surface expression of the CD4 molecule in vivo, we examined the CD4+ T cells harboring proviral DNA obtained from HIV-1-infected individuals who had received no antiretroviral therapy for at least 90 days. Simultaneous immunophenotyping of CD4 cell surface expression and PCR-driven in situ hybridization for HIV-1 DNA were used to resolve the CD4+ T cells into distinct populations predicted upon the presence or absence of proviral DNA. Among the HIV-1-infected study subjects, the percentage of CD4+ T cells harboring proviral DNA ranged from 17.3 to 55.5%, with a mean of 40.5%. Cell surface fluorescent staining with anti-CD4 antibody directed against a non-gp120 binding site-related epitope (L120) or a conformation-dependent epitope of the gp120 binding site (Leu 3A) demonstrated either an equivalent or a 1.5- to 3-fold-lower cell surface staining intensity for the HIV-1 DNA-positive subpopulation relative to the HIV-1 DNA-negative subpopulation, respectively. These data suggest that masking or alteration of specific epitopes on the CD4 molecule occurs after viral infection.  相似文献   

14.
Tardif MR  Tremblay MJ 《Journal of virology》2005,79(21):13714-13724
Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.  相似文献   

15.
16.
CCR5 cell-surface expression was studied in relation to CCR5 genotype and clinical course of HIV-1 infection. HIV-1 infected CCR5+/+ individuals had higher percentages of CCR5-expressing CD4+ T cells as compared with HIV-1-infected CCR532/+ individuals. For both genotypic groups, the percentages of CCR5-expressing cells were higher than for the uninfected counterparts (CCR5+/+, HIV+ 28% and HIV- 15% (p < 0.0001); CCR532/+, HIV+ 21% and HIV- 10% (p = 0.001), respectively). In HIV-1-infected individuals, high percentages of CCR5-expressing cells were associated with low CD4+ T cell numbers (p = 0.001), high viral RNA load in serum (p = 0.046), and low T cell function (p = 0.054). As compared with nonprogressors with similar CD4+ T cell numbers, individuals who did progress to AIDS had a higher percentage of CCR5-expressing CD4+ T cells (32% vs 21% (p = 0.002). Longitudinal analysis of CCR5+/+ individuals revealed slight, although not statistically significant, increases in CCR5-expressing CD4+ T cells and CD4+ T cell subsets characterized by the expression of CD45 isoforms, during the course of HIV-1 infection. Preseroconversion, the percentage of CCR5-expressing CD4+ T cells was higher in individuals who subsequently developed AIDS (28%) than in those who did not show disease progression within a similar time frame (20%; p = 0.059). Our data indicate that CCR5 expression increases with progression of disease, possibly as a consequence of continuous immune activation associated with HIV-1 infection. In turn, CCR5 expression may influence the clinical course of infection.  相似文献   

17.
We recently found that human immunodeficiency virus (HIV)-specific CD4+ T cells express coreceptor CCR5 and activation antigen CD38 during early primary HIV-1 infection (PHI) but then rapidly disappear from the circulation. This cell loss may be due to susceptibility to infection with HIV-1 but could also be due to inappropriate apoptosis, an expansion of T regulatory cells, trafficking out of the circulation, or dysfunction. We purified CD38+++CD4+ T cells from peripheral blood mononuclear cells, measured their level of HIV-1 DNA by PCR, and found that about 10% of this population was infected. However, a small subset of HIV-specific CD4+) T cells also expressed CD127, a marker of long-term memory cells. Purified CD127+CD4+ lymphocytes contained fivefold more copies of HIV-1 DNA per cell than did CD127-negative CD4+ cells, suggesting preferential infection of long-term memory cells. We observed no apoptosis of antigen-specific CD4+ T cells in vitro and only a small increase in CD45RO+CD25+CD127dimCD4+ T regulatory cells during PHI. However, 40% of CCR5+CD38+++ CD4+ T cells expressed gut-homing integrins, suggesting trafficking through gut-associated lymphoid tissue (GALT). Furthermore, 80% of HIV-specific CD4+ T cells expressed high levels of the negative regulator CTLA-4 in response to antigen stimulation in vitro, which was probably contributing to their inability to produce interleukin-2 and proliferate. Taken together, the loss of HIV-specific CD4+ T cells is associated with a combination of an infection of CCR5+ CD127+ memory CD4+ T cells, possibly in GALT, and a high expression of the inhibitory receptor CTLA-4.  相似文献   

18.
The role of HIV-1-specific CD4+ T-cell responses in controlling HIV-1 infection remains unclear. Previous work has suggested that such cells are eliminated in the early stages of infection in most subjects, and thus cannot substantially contribute to host defense against HIV-1. Here, using flow cytometric detection of antigen-induced intracellular cytokines, we show that significant frequencies of gag specific, T-helper-1 CD4+ memory T cells are detectable in most subjects with active/progressive HIV-1 infection (median frequency, 0.12% of memory subset; range, 0-0.66%). Median frequencies of these cells were considerably higher in nonprogressive HIV-1 disease (0.40%), but there was substantial overlap between the two groups (range of nonprogressors, 0.10-1.7%). Continuous HIV-1 suppression with anti-retroviral therapy was associated with a time-dependent reduction in median frequencies of gag-specific CD4+ memory T cells: 0.08% in subjects treated for 4-24 weeks, and 0.03% in subjects treated for 47-112 weeks. Thus, functional HIV-1-specific CD4+ T cells are commonly available for support of anti-HIV-1 effector responses in active disease, but their decline with anti-retroviral therapy indicates that immunologic participation in long-term HIV-1 control will probably require effective vaccination strategies.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) carries virus-encoded and host-derived proteins. Recent advances in the functional characterization of host molecules inserted into mature virus particles have revealed that HIV-1 biology is influenced by the acquisition of host cell membrane components. The CD28/B7 receptor/ligand system is considered one of the fundamental elements of the normal immune response. Two major cell types that harbor HIV-1 in vivo, i.e., monocytes/macrophages and CD4+ T cells, express the costimulatory molecules CD80 (B7.1) and CD86 (B7.2). We investigated whether CD80 and CD86 are efficiently acquired by HIV-1, and if so, whether these host-encoded molecules can contribute to the virus life cycle. Here we provide the first evidence that the insertion of CD80 and CD86 into HIV-1 increases virus infectivity by facilitating the attachment and entry process due to interactions with their two natural ligands, CD28 and CTLA-4. Moreover, we demonstrate that NF-kappaB is induced by CD80- and CD86-bearing virions when they are combined with the engagement of the T-cell receptor/CD3 complex, an event that is inhibited upon surface expression of CTLA-4. Finally, both CD80 and CD86 were found to be efficiently incorporated into R5- and X4-tropic field strains of HIV-1 expanded in cytokine-treated macrophages. Thus, besides direct interactions between the virus envelope glycoproteins and cell surface constituents, such as CD4 and some specific chemokine coreceptors, HIV-1 may attach to target cells via interactions between cell-derived molecules incorporated into virions and their natural ligands. These findings support the theory that HIV-1-associated host proteins alter virus-host dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号