首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of streptomycin to nonsterile soil suppressed the numbers of bacterial cells in the rhizosphere of alfalfa (Medicago sativa L.) for several days, resulted in the enhanced growth of a streptomycin-resistant strain of Rhizobium meliloti, and increased the numbers of nodules on the alfalfa roots. A bacterial mixture inoculated into sterile soil inhibited the colonization of alfalfa roots by R. meliloti, caused a diminution in the number of nodules, and reduced plant growth. Enterobacter aerogenes, Pseudomonas marginalis, Acinetobacter sp., and Klebsiella pneumoniae suppressed the colonization by R. meliloti of roots grown on agar and reduced nodulation by R. meliloti, the suppression of nodulation being statistically significant for the first three species. Bradyrhizobium sp. and “Sarcina lutea” did not suppress root colonization nor nodulation by R. meliloti. The doubling times in the rhizosphere for E. aerogenes, P. marginalis, Acinetobacter sp., and K. pneumoniae were less and the doubling times for Bradyrhizobium sp. and “S. lutea” were greater than the doubling time of R. meliloti. Under the same conditions, Arthrobacter citreus injured alfalfa roots. We suggest that competition by soil bacteria reduces nodulation by rhizobia in soil and that the extent of inhibition is related to the growth rates of the rhizosphere bacteria.  相似文献   

2.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

3.
We examined the effect of reduced water availability on the fatty acid composition of Pseudomonas putida strain mt-2 grown in a defined medium in which the water potential was lowered with the permeating solutes NaCl or polyethylene glycol (PEG) with a molecular weight of 200 (PEG 200) or the nonpermeating solute PEG 8000. Transmission electron microscopy showed that −1.0-MPa PEG 8000-treated cells had convoluted outer membranes, whereas −1.0-MPa NaCl-treated or control cells did not. At the range of water potential (−0.25 to −1.5 MPa) that we examined, reduced water availability imposed by PEG 8000, but not by NaCl or PEG 200, significantly altered the amounts of trans and cis isomers of monounsaturated fatty acids that were present in whole-cell fatty acid extracts. Cells grown in basal medium or under the −0.25-MPa water potential imposed by NaCl or PEG 200 had a higher trans:cis ratio than −0.25-MPa PEG 8000-treated cells. As the water potential was lowered further with PEG 8000 amendments, there was an increase in the amount of trans isomers, resulting in a higher trans:cis ratio. Similar results were observed in cells grown physically separated from PEG 8000, indicating that these changes were not due to PEG toxicity. When cells grown in −1.5-MPa PEG 8000 amendments were exposed to a rapid water potential increase of 1.5 MPa or to a thermodynamically equivalent concentration of the permeating solute, NaCl, there was a decrease in the amount of trans fatty acids with a corresponding increase in the cis isomer. The decrease in the trans/cis ratio following hypoosomotic shock did not occur in the presence of the lipid synthesis inhibitor cerulenin or the growth inhibitors chloramphenicol and rifampicin, which indicates a constitutively operating enzyme system. These results indicate that thermodynamically equivalent concentrations of permeating and nonpermeating solutes have unique effects on membrane fatty acid composition.  相似文献   

4.
Cooper JB  Long SR 《The Plant cell》1994,6(2):215-225
The development of nitrogen-fixing nodules is induced on the roots of legume host plants by Rhizobium bacteria. We employed a novel strategy to probe the underlying mechanism of nodule morphogenesis in alfalfa roots using pTZS, a broad host range plasmid carrying a constitutive trans-zeatin secretion (tzs) gene from Agrobacterium tumefaciens T37. This plasmid suppressed the Nod- phenotype of Rhizobium nodulation mutants such that mutants harboring pTZS stimulated the formation of nodulelike structures. Alfalfa roots formed more or fewer of these nodules according to both the nitrogen content of the environment and the position along the root at which the pTZS+ bacteria were applied, which parallels the physiological and developmental regulation of true Rhizobium nodule formation. This plasmid also conferred on Escherichia coli cells the ability to induce root cortical cell mitoses. Both the pattern of induced cell divisions and the spatially restricted expression of an alfalfa nodule-specific marker gene (MsENOD2) in pTZS-induced nodules support the conclusion that localized cytokinin production produces a phenocopy of nodule morphogenesis.  相似文献   

5.
Spontaneous mutants of Rhizobium meliloti L5-30 defective in motility or chemotaxis were isolated and compared against the parent with respect to symbiotic competence. Each of the mutants was able to generate normal nodules on the host plant alfalfa (Medicago sativa), but had slightly delayed nodule formation, diminished nodulation in the initially susceptible region of the host root, and relatively low representation in nodules following co-inoculation with equal numbers of the parent. When inoculated in growth pouches with increasing dosages of the parental strain, the number of nodules formed in the initially susceptible region of the root increased sigmoidally, with an optimum concentration of about 105 to 106 bacteria/plant. The dose-response behavior of the nonmotile and nonchemotactic mutants was similar, but they required 10- to 30-fold higher concentrations of bacteria to generate the same number of nodules. The distribution frequencies of nodules at different positions along the primary root were very similar for the mutants and parent, indicating that reduced nodulation by the mutants in dose-response experiments probably reflects reduced efficiency of nodule initiation rather than developmentally delayed nodule initiation. The number of bacteria that firmly adsorbed to the host root surface during several hours of incubation was 5- to 20-fold greater for the parent than the mutants. The mutants were also somewhat less effective than their parent as competitors in root adsorption assays. It appears that motility and chemotaxis are quantitatively important traits that facilitate the initial contact and adsorption of symbiotic rhizobia to the host root surface, increase the efficiency of nodule initiation, and increase the rate of infection development.  相似文献   

6.
Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4′,7-dihydroxyflavone, 4′,7-Dihydroxyflavanone, and 4,4′-dihydroxy-2-methoxychalcone, the three principal nod gene inducers secreted by alfalfa roots. Chemotactic responses to the root-secreted nod inducers in capillary assays were usually two- to four-fold above background and, for the flavone and flavonone, occurred at concentrations lower than those required for half-maximal induction of the nodABC genes. Complementation experiments indicated that the lack of chemotactic responsiveness to luteolin seen in nodD1 and nodA mutants of R. meliloti was not due to mutations in the nod genes, as previously thought. Thus, while nod gene induction and flavonoid chemotaxis have the same biochemical specificity, these two functions appear to have independent receptors or transduction pathways. The wild-type strain was found to suffer selective, spontaneous loss of chemotaxis towards flavonoids during laboratory subculture.  相似文献   

7.
8.
Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residues. Structural modifications of the basic lipo-chitooligosaccharide did not affect the cleavage site and had only weak influence on the cleavage efficiency of Nod factors tested. The acylated lipo-trisaccharide was resistant to degradation. When alfalfa roots were preincubated with Nod factors at nanomolar concentrations, the activity of the dimer-forming enzyme was stimulated up to 6-fold within a few hours. The inducing activity of Nod factors decreased in the order NodRm-IV(C16:2,Ac,S) > NodRm-IV(C16:2,S) and NodRm-V(C16:2,Ac,S) > NodRm-V(C16:2,S) > NodRm-IV(C16:0,S) > NodRm-IV(C16:2). Pretreatment with NodRm-III(C16:2) as well as unmodified chitooligosaccharides did not stimulate the dimer-forming enzyme. Roots preincubated with Rhizobium meliloti showed similar stimulation of the dimer-forming activity. Mutant strains unable to produce Nod factors did not enhance the hydrolytic activity. These results indicate a rapid feedback inactivation of Nod signals after their perception by the host plant alfalfa.  相似文献   

9.
Rhizobium meliloti Rm1021 must be able to synthesize succinoglycan in order to invade successfully the nodules which it elicits on alfalfa and to establish an effective nitrogen-fixing symbiosis. Using R. meliloti cells that express green fluorescent protein (GFP), we have examined the nature of the symbiotic deficiency of exo mutants that are defective or altered in succinoglycan production. Our observations indicate that an exoY mutant, which does not produce succinoglycan, is symbiotically defective because it cannot initiate the formation of infection threads. An exoZ mutant, which produces succinoglycan without the acetyl modification, forms nitrogen-fixing nodules on plants, but it exhibits a reduced efficiency in the initiation and elongation of infection threads. An exoH mutant, which produces symbiotically nonfunctional high-molecular-weight succinoglycan that lacks the succinyl modification, cannot form extended infection threads. Infection threads initiate at a reduced rate and then abort before they reach the base of the root hairs. Overproduction of succinoglycan by the exoS96::Tn5 mutant does not reduce the efficiency of infection thread initiation and elongation, but it does significantly reduce the ability of this mutant to colonize the curled root hairs, which is the first step of the invasion process. The exoR95::Tn5 mutant, which overproduces succinoglycan to an even greater extent than the exoS96::Tn5 mutant, has completely lost its ability to colonize the curled root hairs. These new observations lead us to propose that succinoglycan is required for both the initiation and elongation of infection threads during nodule invasion and that excess production of succinoglycan interferes with the ability of the rhizobia to colonize curled root hairs.  相似文献   

10.
Alkaline phosphatase activity and phosphate transport rates in Rhizobium meliloti increased significantly when medium phosphate levels decreased to approximately 10 (mu)M. Both responses were abolished in a Tn5:: phoB mutant, but the mutant could be complemented by a plasmid that contained cloned R. meliloti phoB. The PhoB(sup-) mutant had a normal symbiosis phenotype under growth conditions that supplied either limiting or nonlimiting levels of phosphate to the host plant Medicago sativa, suggesting that induction of genes by PhoB was not required for normal symbiotic function.  相似文献   

11.
Using a plate induction assay, we demonstrate that alfalfa exudes inducer of Rhizobium meliloti nodulation genes. The inducer is exuded from the infectible zone of the root, accumulates to at least 1 micromolar, and is not affected by 10 millimolar nitrate. No zones of inhibition are observed. A nodulation minus mutant line of alfalfa, MN-1008, exudes normal levels of inducer. R. meliloti grown in rich medium requires ten-fold higher concentrations of luteolin to achieve half-maximal induction as compared to cells grown in a minimal medium. Flavonoids other than luteolin are found to have activity in R. meliloti nodulation gene induction assays. The compounds apigenin and eriodictyol have activities two-fifths and one-seventh that of luteolin, respectively. Several of the flavonoids tested (morin = naringenin > kaempferol = chrysin > quercetin = fisetin = hesperitin) demonstrate antagonistic activity toward induction by luteolin. The most effective antagonist is the coumarin, umbelliferone.  相似文献   

12.
The ability of indigenous Rhizobium leguminosarum and Rhizobium meliloti to use organic nutrients as growth substrates in soil was assessed by indirect bacteriophage analysis. A total of 17 organic compounds, including 9 carbohydrates, 3 organic acids, and 5 amino acids, were tested (1,000 μg g−1) in three soils with different cropping histories. Four additional soils were screened with a glucose amendment. Nutrient amendments stimulated growth of indigenous rhizobia, allowing subsequent replication of indigenous bacteriophages. Phage populations were enumerated by plating soil extracts on 19 R. leguminosarum and 9 R. meliloti indicator strains, including root nodule isolates from the soils assayed. On the basis of indirect phage analysis, all soils contained native rhizobia similar to one or more of the indicator strains, although not all indicator strains were detected in soil. All organic compounds stimulated growth of indigenous rhizobia, but the growth response varied for each rhizobial strain depending on the nutrient, the nutrient concentration, and the soil. Indigenous rhizobia readily utilized most organic compounds except phenylalanine, glycine, and aspartic acid. The ability of indigenous rhizobia to utilize a wide range of organic compounds as growth substrates in situ indicates their ability to successfully compete with other soil bacteria for nutrients in these soils.  相似文献   

13.
Whey, a by-product of the dairy industry, has been found to protect the rhizobia cells during freezing and thawing. Cells of rhizobia grown on whey sustained freezing better at −18°C than did cells grown on mannitol or sucrose. Suspensions of cells grown on whey or mannitol that were suspended in whey performed equally well at −18 and −80°C, with 94 and 100% survival, respectively. Whey-grown rhizobia in pellets withstood desiccation better than did their mannitol-grown equivalents. Rhizobia that were grown on whey and then inoculated onto commercial peat showed a survival rate of 100% after 23 weeks at −4°C. Whey-grown cells in peat performed better at various temperatures during storage, even when they were exposed to desiccation, than did mannitol-grown cells in peat. Whey, therefore, offers interesting possibilities as a Rhizobium protectant for the inoculum industry.  相似文献   

14.
Plant Responses to Water Stress   总被引:22,自引:0,他引:22  
This Special Issue comprises a series of papers that developsthe theme of plant responses to water stress, encompassing recentdevelopments at the molecular level, through responses of photosynthesisand metabolism, to their application in crop selection and yield.The consideration of water deficits is particularly timely,given the huge developments in this area in the past decade.This issue specifically sets out to place molecular and physiologicalprocesses and their agronomic applications in an environmentalcontext.  相似文献   

15.
The growth and nodulating characteristics of Rhizobium trifolii 6 and 36 differed under different external phosphate conditions. Under growth conditions designed to deplete the internal phosphate content of the rhizobia, strain 6 maintained a generation time of 5 h during the exponential phase over two cycles of growth in phosphate-depleted medium. In contrast, the generation time of strain 36 was extended from 3.5 to 9.8 h over two cycles of phosphate-depleted growth, although the organism eventually achieved the same cell density and cellular phosphate content as that of strain 6 at stationary phase. Phosphate-depleted strain 6 required 0.51 ± 0.08 μM phosphate to commence proliferation, whereas phosphate-depleted strain 36 required 0.89 ± 0.04 μM phosphate under the same conditions. Phosphate-depleted strain 6 maintained viability when exposed to external phosphate concentrations subcritical for growth to occur, whereas phosphate-depleted strain 36 lost viability within 48 h when exposed to medium containing phosphate at concentrations subcritical for growth. Phosphate-depleted strain 36 was inferior to phosphate-depleted strain 6 at nodulating subterranean clover (Trifolium subterraneum L. cv. Mt. Barker) by taking 2 to 4 days longer to develop nodules in phosphatedepleted plant grown medium at pH 5.5. Nodulation by phosphate-depleted strain 36 was accelerated either by including phosphate in the plant growth medium at pH 5.5 or by raising the solution pH of phosphate-depleted plant growth medium to pH 6.5. External phosphate and pH effects were not observed on the nodulating capabilities of phosphate-depleted strain 6 or on luxury phosphate-grown cells of either strain. Phosphatedepleted strains 6 and 36 proliferated to a similar extent on the rhizoplanes even under stringently low external Pi concentrations. The phosphatase activities of both phosphate-depleted strains were significantly (P = 0.05) higher at pH 6.5 than at pH 5.5, and the activity of strain 6 was significantly higher (P = 0.05) than that of strain 36 at pH 5.5 and 5.0.  相似文献   

16.
Metabolism of some polyols by Rhizobium meliloti   总被引:11,自引:7,他引:4       下载免费PDF全文
The utilization of d-mannitol, d-arabitol, and d-sorbitol by Rhizobium meliloti was studied in extracts from mannitol-grown cells. Two different polyol dehydrogenases were induced by any of these polyols: (i) a nicotinamide adenine dinucleotide (NAD)-arabitol dehydrogenase and (ii) a NAD-sorbitol dehydrogenase, whereas polyol phosphate dehydrogenases were absent. d-Arabitol dehydrogenase was observed to act on both d-arabitol and d-mannitol, but d-sorbitol dehydrogenase acted specifically on d-sorbitol. d-Arabitol was oxidized to d-xylulose, d-mannitol and d-sorbitol were oxidized to d-fructose. An adenosine triphosphate-linked hexokinase which acts on d-fructose and absence of hexose isomerase were also detected in this organism.  相似文献   

17.
The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory roles remain to be identified. These response regulators contain the characteristic domains of the LuxR family of proteins, which include an N-terminal autoinducer/response regulatory domain and a C-terminal helix-turn-helix domain. This study elucidates the regulatory role of one of the orphan LuxR-type response regulators, NesR. Through expression and phenotypic analyses, nesR was determined to affect the active methyl cycle of S. meliloti. Moreover, nesR was shown to influence nutritional and stress response activities in S. meliloti. Finally, the nesR mutant was deficient in competing with the wild-type strain for plant nodulation. Taken together, these results suggest that NesR potentially contributes to the adaptability of S. meliloti when it encounters challenges such as high osmolarity, nutrient starvation, and/or competition for nodulation, thus increasing its chances for survival in the stressful rhizosphere.  相似文献   

18.
Rhizobium meliloti, like many other bacteria, accumulates high levels of glutamic acid when osmotically stressed. The effect was found to be proportional to the osmolarity of the growth medium. NaCl, KCI, sucrose, and polyethylene glycol elicited this response. The intracellular levels of glutamate and K+ began to increase immediately when cells were shifted to high-osmolarity medium. Antibiotics that inhibit protein synthesis did not affect this increase in glutamate production. Cells growing in conventional media at any stage in the growth cycle could be suspended in medium causing osmotic stress and excess glutamate accumulated. The excess glutamate did not appear to be excreted, and the intracellular level eventually returned to normal when osmotically stressed cells were suspended in low-osmolarity medium. A glt mutant lacking glutamate synthase and auxotrophic for glutamate accumulated excess glutamate in response to osmotic stress. Addition of isoleucine, glutamine, proline, or arginine stimulated glutamate accumulation to wild-type levels when the mutant cells were suspended in minimal medium with NaCl to cause osmotic stress. In both wild-type and mutant cells, inhibitors of transaminase activity, including azaserine and aminooxyacetate, reduced glutamate levels. The results suggest that the excess glutamate made in response to osmotic stress is derived from degradation of amino acids and transamination of 2-ketoglutarate.  相似文献   

19.
Alfalfa plants co-inoculated with Rhizobium meliloti nodulation (Nod-) and infection mutants deficient in exopolysaccharide production (Inf-EPS-) formed mixed infected nodules that were capable of fixing atmospheric nitrogen. The formation of infected nodules was dependent on close contact between the inoculation partners. When the partners were separated by a filter, empty Fix- nodules were formed, suggesting that infection thread formation in alfalfa is dependent on signals from the nodulation and infection genes. In mixed infected nodules, both nodulation and infection mutants colonized the plant cells and differentiated into bacteroids. The formation of bacteroids was not dependent on cell-to-cell contact between the mutants. Immunogold/silver staining revealed that the ratio of the two mutants varied considerably in colonized plant cells following mixed inoculation. The introduction of an additional nif/fix mutation into one of the inoculation partners did not abolish nitrogen fixation in mixed infected nodules. The expression of nif D::lacZ fusions additionally demonstrated that mutations in the nodulation and infection genes did not prevent the nif genes from being expressed in the mutant bacteroids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号