首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Terminal osseous dysplasia (TOD) is an X-linked dominant male-lethal disease characterized by skeletal dysplasia of the limbs, pigmentary defects of the skin, and recurrent digital fibroma with onset in female infancy. After performing X-exome capture and sequencing, we identified a mutation at the last nucleotide of exon 31 of the FLNA gene as the most likely cause of the disease. The variant c.5217G>A was found in six unrelated cases (three families and three sporadic cases) and was not found in 400 control X chromosomes, pilot data from the 1000 Genomes Project, or the FLNA gene variant database. In the families, the variant segregated with the disease, and it was transmitted four times from a mildly affected mother to a more seriously affected daughter. We show that, because of nonrandom X chromosome inactivation, the mutant allele was not expressed in patient fibroblasts. RNA expression of the mutant allele was detected only in cultured fibroma cells obtained from 15-year-old surgically removed material. The variant activates a cryptic splice site, removing the last 48 nucleotides from exon 31. At the protein level, this results in a loss of 16 amino acids (p.Val1724_Thr1739del), predicted to remove a sequence at the surface of filamin repeat 15. Our data show that TOD is caused by this single recurrent mutation in the FLNA gene.  相似文献   

2.
Autosomal-dominant striatal degeneration (ADSD) is an autosomal-dominant movement disorder affecting the striatal part of the basal ganglia. ADSD is characterized by bradykinesia, dysarthria, and muscle rigidity. These symptoms resemble idiopathic Parkinson disease, but tremor is not present. Using genetic linkage analysis, we have mapped the causative genetic defect to a 3.25 megabase candidate region on chromosome 5q13.3-q14.1. A maximum LOD score of 4.1 (Θ = 0) was obtained at marker D5S1962. Here we show that ADSD is caused by a complex frameshift mutation (c.94G>C+c.95delT) in the phosphodiesterase 8B (PDE8B) gene, which results in a loss of enzymatic phosphodiesterase activity. We found that PDE8B is highly expressed in the brain, especially in the putamen, which is affected by ADSD. PDE8B degrades cyclic AMP, a second messenger implied in dopamine signaling. Dopamine is one of the main neurotransmitters involved in movement control and is deficient in Parkinson disease. We believe that the functional analysis of PDE8B will help to further elucidate the pathomechanism of ADSD as well as contribute to a better understanding of movement disorders.  相似文献   

3.
4.
The spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of disorders characterized by degeneration and loss of anterior horn cells in the spinal cord, leading to muscle weakness and atrophy. Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH, also known as pontocerebellar hypoplasia type 1 [PCH1]) is one of the rare infantile SMA variants that include additional clinical manifestations, and its genetic basis is unknown. We used a homozygosity mapping and positional cloning approach in a consanguineous family of Ashkenazi Jewish origin and identified a nonsense mutation in the vaccinia-related kinase 1 gene (VRK1) as a cause of SMA-PCH. VRK1, one of three members of the mammalian VRK family, is a serine/threonine kinase that phosphorylates p53 and CREB and is essential for nuclear envelope formation. Its identification as a gene involved in SMA-PCH implies new roles for the VRK proteins in neuronal development and maintenance and suggests the VRK genes as candidates for related phenotypes.  相似文献   

5.
brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele.Plant cell walls constitute a vast reserve of fixed carbon. Cellulose and lignin are the first and second most abundant polymers on the planet, respectively (Jung and Ni, 1998). The world community has started to look to biomass as substrates for plant-based biologically sustainable fuels, which would mitigate carbon dioxide emission and reduce petroleum dependence (Sarath et al., 2008; Schmer et al., 2008). In the current generation of biofuels, ethanol is being synthesized via the fermentation of grain starch or sugarcane juice. For the next generation of biofuels, research is being directed toward the conversion of lignocellulosic biomass into biofuels (Chang, 2007). As bioenergy technologies progress, the conversion of biomass to biofuels could involve a range of chemical, biochemical, and fermentation processes to produce biofuels; alternate biofuels, such as butanol or dimethylfuran, are also on the horizon (Ezeji et al., 2007; Roman-Leshkov et al., 2007). Most liquid biofuel production processes will likely rely on the conversion of the cell wall polysaccharides cellulose and hemicellulose into monomeric sugars.Plant cell walls consist of a complex polysaccharide moiety composed of cellulose microfibrils, composed of β-1,4-linked Glc polymers (Carpita and McCann, 2000). Connecting the cellulose microfibrils to each other is a hemicellulose network, whose structure and composition are species dependent, and which is mainly composed of glucuronoarabinoxylans in grasses (Carpita and McCann, 2000). Lignin, a nonlinear heterogeneous polymer derived from aromatic precursors, cross-links these polysaccharides, rigidifying and reinforcing the cell wall structure (Carpita and McCann, 2000). The addition of lignin polymers to the polysaccharide matrix creates a barrier that is chemically and microbially resistant.Lignin can block the liberation of sugars from the cell wall polysaccharide moieties, release compounds that can inhibit microbes used for fermenting sugars to fuels, and adhere to hydrolytic enzymes. Understanding lignin synthesis, structure, and function to increase cell wall digestibility has long been a goal for forage improvement and paper processing (Mackay et al., 1997; Jung and Ni, 1998). Recently, manipulating lignin has also become an important target for bioenergy feedstock improvement (Chen and Dixon, 2007; Li et al., 2008).Lignin is derived from the phenylpropanoid pathway and contains primarily three types of phenolic subunits: p-hydroxyphenyl, guaiacyl, and syringyl units (Dixon et al., 2001). The phenolic aldehyde precursors are reduced into their corresponding alcohols (monolignols) and subsequently transported to the cell wall (Fig. 1), where laccases and peroxidases catalyze lignin polymerization through the formation of monolignol radicals (Boerjan et al., 2003). Therefore, most research efforts to manipulate lignin have focused on biosynthesis of the monolignols. Most of the enzymes involved in monolignol synthesis have been cloned and characterized in Arabidopsis (Arabidopsis thaliana) and other dicot species, using both mutagenic and transgenic approaches to study the impact of these gene products on dicot cell walls (Anterola and Lewis, 2002). However, there are significant differences in the architecture, polysaccharide composition, and phenylpropanoid composition of grass cell walls compared with those of dicots (Carpita and McCann, 2000; Vogel and Jung, 2001). For example, grasses contain significant amounts of p-coumaric acid and ferulic acid that are cross-linked to cell wall polysaccharides through ester and ether linkages in addition to their presence in lignin (Grabber et al., 1991; Boerjan et al., 2003). Because many of the proposed dedicated bioenergy crops are grasses, there is a need to identify and understand the function of the gene products involved in lignin biosynthesis in these species (Vermerris et al., 2007; Li et al., 2008; Sarath et al., 2008).Open in a separate windowFigure 1.The CAD enzyme and its role in the monolignol biosynthetic pathway. A, CAD catalyzes the conversion of cinnamyl aldehydes to alcohols using NADPH as its cofactor. p-Coumaryl aldehyde and alcohol, R1 and R2 = H; caffeoyl aldehyde and alcohol, R1 and R2 = OH; coniferyl aldehyde and alcohol, R1 = H and R2 = OCH3; sinapyl aldehyde and alcohol, R1 and R2 = OCH3. B, A simplified model of the lignin biosynthetic pathway where CAD catalyzes the final step in monolignol biosynthesis.The brown midrib phenotype has been useful for identifying mutants affecting lignin synthesis in grasses because it is a visible phenotype. Spontaneous brown midrib mutants were first discovered in maize (Zea mays; Jorgenson, 1931) and were subsequently generated in sorghum (Sorghum bicolor) using diethyl sulfate mutagenesis (Porter et al., 1978). Brown midrib mutants in maize, sorghum, and pearl millet (Pennisetum glaucum) have increased forage digestibility for livestock (Cherney et al., 1990; Akin et al., 1993; Jung et al., 1998; Oliver et al., 2004). In maize and sorghum, there are at least four brown midrib loci in their respective genomes (Jorgenson, 1931; Porter et al., 1978; Gupta, 1995). The genes encoding bm3 in maize and bmr12 in sorghum are the only loci cloned to date, and both encode highly similar caffeic acid O-methyl transferases (Vignols et al., 1995; Bout and Vermerris, 2003). A second brown midrib locus associated with reduced cinnamyl alcohol dehydrogenase (CAD) activity has been identified both in maize (bm1; Halpin et al., 1998) and sorghum (bmr6; Bucholtz et al., 1980; Pillonel et al., 1991). CAD is a member of the alcohol dehydrogenase superfamily of proteins that catalyzes the conversion of the hydroxycinnamoyl aldehydes into alcohols prior to their incorporation into lignin polymers (Fig. 1). Reduced CAD activity results in increased digestibility on dry weight basis, altered cell wall architecture, reduced lignin level, and the incorporation of phenolic aldehydes into lignin in sorghum and maize (Pillonel et al., 1991; Provan et al., 1997; Halpin et al., 1998; Marita et al., 2003; Shi et al., 2006; Palmer et al., 2008). The reduced CAD activity in bm1 has been genetically mapped to a region of the maize genome that contained a CAD gene, ZmCAD2 (Halpin et al., 1998), but a mutation was not identified. However, it has recently been shown that bm1 down-regulated the expression of several lignin biosynthetic genes, suggesting its gene product may be a regulatory protein (Shi et al., 2006; Guillaumie et al., 2007).To identify the mutation responsible for the bmr6 phenotype and to characterize how bmr6 impacts the lignin biosynthetic pathway, a candidate gene approach was taken. Here, we describe the cloning and characterization of Bmr6 and a related protein, SbCAD4. The identification and characterization of Bmr6 has revealed the major monolignol CAD protein in the grasses, which is likely to aid the development of new strategies to increase conversion of sorghum and other grass feedstocks to biofuels.  相似文献   

6.
7.
TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons and denervation atrophy of skeletal muscles. This robust rat model also recapitulated features of TDP-43 proteinopathies including the formation of TDP-43 inclusions, cytoplasmic localization of phosphorylated TDP-43, and fragmentation of TDP-43 protein. TDP transgenic rats will be useful for deciphering the mechanisms underlying TDP-43–related neurodegenerative diseases.  相似文献   

8.
The Vir-c mutation is a virescent chloroplast mutation found in a line of plants derived from protoplast fusions between a Nicotina tabacum line and a line containing N. tabacum nuclei with Nicotiana suaveolens cytoplasm. Vir-c displays a lag period in chlorophyll accumulation and granal stack formation in young leaves. We examined total chloroplast protein in young leaves and showed the mutant contains 1.3 to 2.1 times less stromal protein, and 2.9 to 4.3 times less thylakoid protein when compared to the N. tabacum var “Turkish Samsun” control. Electrophoretic patterns of total thylakoid proteins indicated three polypeptides were specifically decreased in amount within the context of the overall reduction in thylakoid protein. Electrophoresis of thylakoid proteins synthesized by chloroplasts isolated from half-expanded leaves demonstrated that mutant chloroplasts did not synthesize a 37.5 kilodalton polypeptide which was synthesized by “Samsun” chloroplasts. A polypeptide of this molecular weight was synthesized by Vir-c chloroplasts isolated from mature leaves which had recovered the normal phenotype. Restriction digestion and electrophoresis of the mutant's chloroplast DNA produced a pattern of restriction fragments different from either N. tabacum or N. suaveolens chloroplast DNA.  相似文献   

9.
10.
The Ds-controlled allele, bz-m4 Derivative 6856 [bz-m4 D6856], is reported to have an altered temporal- and tissue-specific pattern of gene expression. We have cloned this allele and have characterized it at the molecular level. The mutation was caused by the insertion of a complex transposon-like structure 36 base pairs downstream from the Bz mRNA cap site. The insert is 6.7-kbp long. Ds elements, each approximately 2 kbp in length, are at both ends of the insert. The sequence between the Ds elements is a partial duplication of flanking sequences from the 3' end of the Bz gene. These data suggest that Ds initially inserted near the 3' end of the gene and mobilized adjacent sequences as it transposed.  相似文献   

11.
12.
Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in neuronal migration and differentiation, and in axonal elongation. Although many studies have been conducted to analyze neuronal functions of Cdk5, its kinase activity has also been reported during oligodendrocyte differentiation, which suggests Cdk5 may play an important role in oligodendrocytes. Here, we describe a hypomyelination phenotype observed in Emx1-cre mediated Cdk5 conditional knockout (cKO) mice (Emx1-cKO), in which the Cdk5 gene was deleted in neurons, astrocytes and oligodendrocyte -lineage cells. In contrast, the Cdk5 gene in CaMKII cKO mice was deleted only in neurons. Because the development of mature oligodendrocytes from oligodendrocyte precursor cells is a complex process, we performed in situ hybridization using markers for the oligodendrocyte precursor cell and for the differentiated oligodendrocyte. Our results indicate that hypomyelination in Emx1-cKO is due to the impaired differentiation of oligodendrocytes, rather than to the proliferation or migration of their precursors. The present study confirmed the in vivo role of Cdk5 in oligodendrocyte differentiation.  相似文献   

13.
Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/− mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/− mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/− mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.  相似文献   

14.
Sensory ataxic neuropathy (SAN) is a recently identified neurological disorder in golden retrievers. Pedigree analysis revealed that all affected dogs belong to one maternal lineage, and a statistical analysis showed that the disorder has a mitochondrial origin. A one base pair deletion in the mitochondrial tRNATyr gene was identified at position 5304 in affected dogs after re-sequencing the complete mitochondrial genome of seven individuals. The deletion was not found among dogs representing 18 different breeds or in six wolves, ruling out this as a common polymorphism. The mutation could be traced back to a common ancestor of all affected dogs that lived in the 1970s. We used a quantitative oligonucleotide ligation assay to establish the degree of heteroplasmy in blood and tissue samples from affected dogs and controls. Affected dogs and their first to fourth degree relatives had 0–11% wild-type (wt) sequence, while more distant relatives ranged between 5% and 60% wt sequence and all unrelated golden retrievers had 100% wt sequence. Northern blot analysis showed that tRNATyr had a 10-fold lower steady-state level in affected dogs compared with controls. Four out of five affected dogs showed decreases in mitochondrial ATP production rates and respiratory chain enzyme activities together with morphological alterations in muscle tissue, resembling the changes reported in human mitochondrial pathology. Altogether, these results provide conclusive evidence that the deletion in the mitochondrial tRNATyr gene is the causative mutation for SAN.  相似文献   

15.
16.
17.
SecB is a cytosolic protein required for rapid and efficient export of particular periplasmic and outer membrane proteins in Escherichia coli. SecB promotes export by stabilizing newly synthesized precursor proteins in a nonnative conformation and by targeting the precursors to the inner membrane. Biochemical studies suggest that SecB facilitates precursor targeting by binding to the SecA protein, a component of the membrane-embedded translocation apparatus. To gain more insight into the functional interaction of SecB and SecA, in vivo, mutations in the secA locus that compensate for the export defect caused by the secB missense mutation secBL75Q were isolated. Two suppressors were isolated, both of which led to the overproduction of wild-type SecA protein. In vivo studies demonstrated that the SecBL75Q mutant protein releases precursor proteins at a lower rate than does wild-type SecB. Increasing the level of SecA protein in the cell was found to reverse this slow-release defect, indicating that overproduction of SecA stimulates the turnover of SecBL75Q-precursor complexes. These findings lend additional support to the proposed pathway for precursor targeting in which SecB promotes targeting to the translocation apparatus by binding to the SecA protein.  相似文献   

18.
19.
Chi, an element that stimulates recombination via the E. coli RecBC pathway, can arise by spontaneous mutation in the transposon Tn5. When in phage lambda in one orientation, the mutant transposon confers Chi+ phenotype (large plaque and a high rate of exchange near the transposon). In the other orientation, however, the transposon does not confer Chi+ phenotype. The mobility of the transposon allows us to show that the Chi+ orientation of the mutant Tn5 is the same at different locations in lambda. These include a site near gene J, one in gam at 69, one to the right of gam at 73 and several to the right of R between 95.7 and 99.5. To the right of R, the mutant transposon could be found in only one orientation, that which confers Chi+ phenotype. We speculate that the other orientation of Tn5 in that locale is lethal to lambda. The orientation-dependence of Chi+ phenotype also revealed that Tn5 flip-flops in lambda.  相似文献   

20.
The granule-bound starch synthase I (GBSSI or waxy) enzyme catalyzes one of the enzymatic steps of starch synthesis. This enzyme is responsible for the synthesis of amylose and is also involved in building the final structure of amylopectin. Little is known about expression of GBSSI genes in tissues other than storage organs, such as seeds, endosperm, and tuber. We have isolated a gene encoding the GBSSI from snapdragon (Antirrhinum majus). This gene is present as a single copy in the snapdragon genome. There is a precise spatial and developmental regulation of its expression in flowers. GBSSI expression was observed in all floral whorls at early developmental stages, but it was restricted to carpel before anthesis. These results give new insights into the role of starch in later reproductive events such as seed filling. In leaves the mRNA level of GBSSI is regulated by an endogenous circadian clock, indicating that the transition from day to night may be accompanied by abolition of expression of starch synthesis genes. This mechanism does not operate in sink tissues such as roots when grown in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号