首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.  相似文献   

2.
H X Zhou  Y Shan 《Proteins》2001,44(3):336-343
Protein-protein interaction sites are predicted from a neural network with sequence profiles of neighboring residues and solvent exposure as input. The network was trained on 615 pairs of nonhomologous complex-forming proteins. Tested on a different set of 129 pairs of nonhomologous complex-forming proteins, 70% of the 11,004 predicted interface residues are actually located in the interfaces. These 7732 correctly predicted residues account for 65% of the 11,805 residues making up the 129 interfaces. The main strength of the network predictor lies in the fact that neighbor lists and solvent exposure are relatively insensitive to structural changes accompanying complex formation. As such, it performs equally well with bound or unbound structures of the proteins. For a set of 35 test proteins, when the input was calculated from the bound and unbound structures, the correct fractions of the predicted interface residues were 69 and 70%, respectively.  相似文献   

3.
Genomics has posed the challenge of determination of protein function from sequence and/or 3-D structure. Functional assignment from sequence relationships can be misleading, and structural similarity does not necessarily imply functional similarity. Proteins in the DJ-1 family, many of which are of unknown function, are examples of proteins with both sequence and fold similarity that span multiple functional classes. THEMATICS (theoretical microscopic titration curves), an electrostatics-based computational approach to functional site prediction, is used to sort proteins in the DJ-1 family into different functional classes. Active site residues are predicted for the eight distinct DJ-1 proteins with available 3-D structures. Placement of the predicted residues onto a structural alignment for six of these proteins reveals three distinct types of active sites. Each type overlaps only partially with the others, with only one residue in common across all six sets of predicted residues. Human DJ-1 and YajL from Escherichia coli have very similar predicted active sites and belong to the same probable functional group. Protease I, a known cysteine protease from Pyrococcus horikoshii, and PfpI/YhbO from E. coli, a hypothetical protein of unknown function, belong to a separate class. THEMATICS predicts a set of residues that is typical of a cysteine protease for Protease I; the prediction for PfpI/YhbO bears some similarity. YDR533Cp from Saccharomyces cerevisiae, of unknown function, and the known chaperone Hsp31 from E. coli constitute a third group with nearly identical predicted active sites. While the first four proteins have predicted active sites at dimer interfaces, YDR533Cp and Hsp31 both have predicted sites contained within each subunit. Although YDR533Cp and Hsp31 form different dimers with different orientations between the subunits, the predicted active sites are superimposable within the monomer structures. Thus, the three predicted functional classes form four different types of quaternary structures. The computational prediction of the functional sites for protein structures of unknown function provides valuable clues for functional classification.  相似文献   

4.
THEMATICS (Theoretical Microscopic Titration Curves) is a simple, reliable computational predictor of the active sites of enzymes from structure. Our method, based on well-established Finite Difference Poisson-Boltzmann techniques, identifies the ionisable residues with anomalous predicted titration behavior. A cluster of two or more such perturbed residues is a very reliable predictor of the active site. The protein does not have to bear any resemblance in sequence or structure to any previously characterized protein, but the method does require the three-dimensional structure. We now present evidence that THEMATICS can also locate the active site in structures built by comparative modeling from similar structures. Results are given for a total of 21 sets of proteins, including 21 templates and 83 comparative model structures. Detailed results are presented for three sets of orthologous proteins (Triosephosphate isomerase, 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase, and Aspartate aminotransferase) and for one set of human homologues of Aldose reductase with different functions. THEMATICS correctly locates the active site in the model structures. This suggests that the method can be applicable to a much larger set of proteins for which an experimentally determined structure is unavailable. With a few exceptions, the predicted active sites in the comparative model structures are similar to that of the corresponding template structure.  相似文献   

5.
Predicted protein-protein interaction sites from local sequence information   总被引:2,自引:0,他引:2  
Ofran Y  Rost B 《FEBS letters》2003,544(1-3):236-239
Protein-protein interactions are facilitated by a myriad of residue-residue contacts on the interacting proteins. Identifying the site of interaction in the protein is a key for deciphering its functional mechanisms, and is crucial for drug development. Many studies indicate that the compositions of contacting residues are unique. Here, we describe a neural network that identifies protein-protein interfaces from sequence. For the most strongly predicted sites (in 34 of 333 proteins), 94% of the predictions were confirmed experimentally. When 70% of our predictions were right, we correctly predicted at least one interaction site in 20% of the complexes (66/333). These results indicate that the prediction of some interaction sites from sequence alone is possible. Incorporating evolutionary and predicted structural information may improve our method. However, even at this early stage, our tool might already assist wet-lab biology.  相似文献   

6.
7.
O-linked glycosylation is a post-translational and post-folding event involving exposed S/T residues at beta-turns or in regions with extended conformation. O-linked sites are difficult to predict from sequence analyses compared to N-linked sites. Here we compare the results of chemical analyses of isolated glycopeptides with the prediction using the neural network prediction method NetOGlyc3.1, a procedure that has been reported to correctly predict 76% of O-glycosylated residues in proteins. Using the heavily glycosylated human insulin receptor as the test protein six sites of mucin-type O-glycosylation were found at residues T744, T749, S757, S758, T759, and T763 compared to the three sites (T759 and T763- correctly, T756- incorrectly) predicted by the neural network method. These six sites occur in a 20 residue segment that begins nine residues downstream from the start of the insulin receptor beta-chain. This region which also includes N-linked glycosylation sites at N742 and N755, is predicted to lack secondary structure and is followed by residues 765-770, the known linear epitope for the monoclonal antibody 18-44.  相似文献   

8.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

9.
Earlier studies of a group of monoclonal antibody-resistant (mar) mutants of herpes simplex virus type 1 glycoprotein C (gC) operationally defined two distinct antigenic sites on this molecule, each consisting of numerous overlapping epitopes. In this report, we further define epitopes of gC by sequence analysis of the mar mutant gC genes. In 18 mar mutants studied, the mar phenotype was associated with a single nucleotide substitution and a single predicted amino acid change. The mutations were localized to two regions within the coding sequence of the external domain of gC and correlated with the two previously defined antigenic sites. The predicted amino acid substitutions of site I mutants resided between residues Gln-307 and Pro-373, whereas those of site II mutants occurred between amino acids Arg-129 and Glu-247. Of the 12 site II mutations, 9 induced amino acid substitutions within an arginine-rich segment of 8 amino acids extending from residues 143 to 151. The clustering of the majority of substituted residues suggests that they contribute to the structure of the affected sites. Moreover, the patterns of substitutions which affected recognition by antibodies with similar epitope specificities provided evidence that epitope structures are physically linked and overlap within antigenic sites. Of the nine epitopes defined on the basis of mutations, three were located within site I and six were located within site II. Substituted residues affecting the site I epitopes did not overlap substituted residues of site II, supporting our earlier conclusion that sites I and II reside in spatially distinct antigenic domains. A computer analysis of the distribution of charged residues and the predicted secondary structural features of wild-type gC revealed that the two antigenic sites reside within the most hydrophilic regions of the molecule and that the antigenic residues are likely to be organized as beta sheets which loop out from the surface of the molecule. Together, these data and our previous studies support the conclusion that the mar mutations identified by sequence analysis very likely occur within or near the epitope structures themselves. Thus, two highly antigenic regions of gC have now been physically and genetically mapped to well-defined domains of the protein molecule.  相似文献   

10.
A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.  相似文献   

11.
The prediction of functional sites in newly solved protein structures is a challenge for computational structural biology. Most methods for approaching this problem use evolutionary conservation as the primary indicator of the location of functional sites. However, sequence conservation reflects not only evolutionary selection at functional sites to maintain protein function, but also selection throughout the protein to maintain the stability of the folded state. To disentangle sequence conservation due to protein functional constraints from sequence conservation due to protein structural constraints, we use all atom computational protein design methodology to predict sequence profiles expected under solely structural constraints, and to compute the free energy difference between the naturally occurring amino acid and the lowest free energy amino acid at each position. We show that functional sites are more likely than non-functional sites to have computed sequence profiles which differ significantly from the naturally occurring sequence profiles and to have residues with sub-optimal free energies, and that incorporation of these two measures improves sequence based prediction of protein functional sites. The combined sequence and structure based functional site prediction method has been implemented in a publicly available web server.  相似文献   

12.
Predicting surface exposure of amino acids from protein sequence   总被引:8,自引:0,他引:8  
The amino acid residues on a protein surface play a key role in interaction with other molecules, determined many physical properties, and constrain the structure of the folded protein. A database of monomeric protein crystal structures was used to teach computer-simulated neural networks rules for predicting surface exposure from local sequence. These trained networks are able to correctly predict surface exposure for 72% of residues in a testing set using a binary model, (buried/exposed) and for 54% of residues using a ternary model (buried/intermediate/exposed). In the ternary model, only 11% of the exposed residues are predicted as buried and only 5% of the buried residues are predicted as exposed. Also, since the networks are able to predict exposure with a quantitative confidence estimate, it is possible to assign exposure for over half of the residues in a binary model with greater than 80% accuracy. Even more accurate predictions are obtained by making a consensus prediction of exposure for a homologous family. The effect of the local environment of an amino acid on its accessibility, though smaller than expected, is significant and accounts for the higher success rate of prediction than obtained with previously used criteria. In the absence of a three-dimensional structure, the ability to predict surface accessibility of amino acids directly from the sequence is a valuable tool in choosing sites of chemical modification or specific mutations and in studies of molecular interaction.  相似文献   

13.
NetCGlyc 1.0: prediction of mammalian C-mannosylation sites   总被引:2,自引:0,他引:2  
Julenius K 《Glycobiology》2007,17(8):868-876
  相似文献   

14.
Metals play a variety of roles in biological processes, and hence their presence in a protein structure can yield vital functional information. Because the residues that coordinate a metal often undergo conformational changes upon binding, detection of binding sites based on simple geometric criteria in proteins without bound metal is difficult. However, aspects of the physicochemical environment around a metal binding site are often conserved even when this structural rearrangement occurs. We have developed a Bayesian classifier using known zinc binding sites as positive training examples and nonmetal binding regions that nonetheless contain residues frequently observed in zinc sites as negative training examples. In order to allow variation in the exact positions of atoms, we average a variety of biochemical and biophysical properties in six concentric spherical shells around the site of interest. At a specificity of 99.8%, this method achieves 75.5% sensitivity in unbound proteins at a positive predictive value of 73.6%. We also test its accuracy on predicted protein structures obtained by homology modeling using templates with 30%-50% sequence identity to the target sequences. At a specificity of 99.8%, we correctly identify at least one zinc binding site in 65.5% of modeled proteins. Thus, in many cases, our model is accurate enough to identify metal binding sites in proteins of unknown structure for which no high sequence identity homologs of known structure exist. Both the source code and a Web interface are available to the public at http://feature.stanford.edu/metals.  相似文献   

15.
An important function of the mammalian nonerythroid alpha-spectrin chain (alpha-fodrin) that distinguishes it from the closely related erythroid isoform is its ability to bind calmodulin. By analysis of a series of deleted recombinant spectrin fusion proteins, we have identified a region in the nonerythroid alpha chain involved in calcium-dependent binding of calmodulin. The region is distinctive in that the sequence is absent from the homologous domain of the erythroid alpha chain and diverges from the normal internal repeat structure observed throughout other spectrins. In order to determine limits of this functional site, a synthetic peptide as small as 24 residues was shown to compete with either recombinant or brain alpha-spectrin in binding to calmodulin. The active peptide, which was derived from a segment between repeats 11 and 12, was composed of the following sequence: Lys-Thr-Ala-Ser-Pro-Trp-Lys-Ser-Ala-Arg-Leu-Met-Val-His-Thr-Val-Ala-Thr-Phe-Asn - Ser-Ile-Lys-Glu. Comparison of this sequence with functional sites in other diverse calcium-dependent calmodulin-binding proteins has revealed a structural motif common to all of these proteins, namely clusters of hydrophobic residues interspersed with basic residues. When folded into alpha-helical conformations, these binding sites are predicted to form amphipathic structures.  相似文献   

16.
To investigate the relationships between functional subclasses and sequence and structural information contained in the active‐site and ligand‐binding residues (LBRs), we performed a detailed analysis of seven diverse enzyme superfamilies: aldolase class I, TIM‐barrel glycosidases, α/β‐hydrolases, P‐loop containing nucleotide triphosphate hydrolases, collagenase, Zn peptidases, and glutamine phosphoribosylpyrophosphate, subunit 1, domain 1. These homologous superfamilies, as defined in CATH, were selected from the enzyme catalytic‐mechanism database. We defined active‐site and LBRs based solely on the literature information and complex structures in the Protein Data Bank. From a structure‐based multiple sequence alignment for each CATH homologous superfamily, we extracted subsequences consisting of the aligned positions that were used as an active‐site or a ligand‐binding site by at least one sequence. Using both the subsequences and full‐length alignments, we performed cluster analysis with three sequence distance measures. We showed that the cluster analysis using the subsequences was able to detect functional subclasses more accurately than the clustering using the full‐length alignments. The subsequences determined by only the literature information and complex structures, thus, had sufficient information to detect the functional subclasses. Detailed examination of the clustering results provided new insights into the mechanism of functional diversification for these superfamilies. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
A major problem in genome annotation is whether it is valid to transfer the function from a characterised protein to a homologue of unknown activity. Here, we show that one can employ a strategy that uses a structure-based prediction of protein functional sites to assess the reliability of functional inheritance. We have automated and benchmarked a method based on the evolutionary trace approach. Using a multiple sequence alignment, we identified invariant polar residues, which were then mapped onto the protein structure. Spatial clusters of these invariant residues formed the predicted functional site. For 68 of 86 proteins examined, the method yielded information about the observed functional site. This algorithm for functional site prediction was then used to assess the validity of transferring the function between homologues. This procedure was tested on 18 pairs of homologous proteins with unrelated function and 70 pairs of proteins with related function, and was shown to be 94 % accurate. This automated method could be linked to schemes for genome annotation. Finally, we examined the use of functional site prediction in protein-protein and protein-DNA docking. The use of predicted functional sites was shown to filter putative docked complexes with a discrimination similar to that obtained by manually including biological information about active sites or DNA-binding residues.  相似文献   

18.
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.  相似文献   

19.
Characterizing enzyme sequences and identifying their active sites is a very important task. The current experimental methods are too expensive and labor intensive to handle the rapidly accumulating protein sequences and structure data. Thus accurate, high-throughput in silico methods for identifying catalytic residues and enzyme function prediction are much needed. In this paper, we propose a novel sequence-based catalytic domain prediction method using a sequence clustering and an information-theoretic approaches. The first step is to perform the sequence clustering analysis of enzyme sequences from the same functional category (those with the same EC label). The clustering analysis is used to handle the problem of widely varying sequence similarity levels in enzyme sequences. The clustering analysis constructs a sequence graph where nodes are enzyme sequences and edges are a pair of sequences with a certain degree of sequence similarity, and uses graph properties, such as biconnected components and articulation points, to generate sequence segments common to the enzyme sequences. Then amino acid subsequences in the common shared regions are aligned and then an information theoretic approach called aggregated column related scoring scheme is performed to highlight potential active sites in enzyme sequences. The aggregated information content scoring scheme is shown to be effective to highlight residues of active sites effectively. The proposed method of combining the clustering and the aggregated information content scoring methods was successful in highlighting known catalytic sites in enzymes of Escherichia coli K12 in terms of the Catalytic Site Atlas database. Our method is shown to be not only accurate in predicting potential active sites in the enzyme sequences but also computationally efficient since the clustering approach utilizes two graph properties that can be computed in linear to the number of edges in the sequence graph and computation of mutual information does not require much time. We believe that the proposed method can be useful for identifying active sites of enzyme sequences from many genome projects.  相似文献   

20.
The development of accurate protein function annotation methods has emerged as a major unsolved biological problem. Protein similarity networks, one approach to function annotation via annotation transfer, group proteins into similarity-based clusters. An underlying assumption is that the edge metric used to identify such clusters correlates with functional information. In this contribution, this assumption is evaluated by observing topologies in similarity networks using three different edge metrics: sequence (BLAST), structure (TM-Align), and active site similarity (active site profiling, implemented in DASP). Network topologies for four well-studied protein superfamilies (enolase, peroxiredoxin (Prx), glutathione transferase (GST), and crotonase) were compared with curated functional hierarchies and structure. As expected, network topology differs, depending on edge metric; comparison of topologies provides valuable information on structure/function relationships. Subnetworks based on active site similarity correlate with known functional hierarchies at a single edge threshold more often than sequence- or structure-based networks. Sequence- and structure-based networks are useful for identifying sequence and domain similarities and differences; therefore, it is important to consider the clustering goal before deciding appropriate edge metric. Further, conserved active site residues identified in enolase and GST active site subnetworks correspond with published functionally important residues. Extension of this analysis yields predictions of functionally determinant residues for GST subgroups. These results support the hypothesis that active site similarity-based networks reveal clusters that share functional details and lay the foundation for capturing functionally relevant hierarchies using an approach that is both automatable and can deliver greater precision in function annotation than current similarity-based methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号