首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular adhesions to other cells and to the extracellular matrix play crucial roles in the malignant progression of cancer. In this study, we investigated the role of protein kinase C (PKC) in the regulation of cell-substratum adhesion by the breast adenocarcinoma cell line MCF-7. A PKC activator, 12-O-tetradecanoylphorbol-l, 3-acetate (TPA), stimulated cell adhesion to laminin and collagen I in a dose-dependent manner over a 1- to 4-h interval. This enhanced adhesion was mediated by alpha2beta1 integrin, since both anti-alpha2 and anti-beta1 blocking antibodies each completely abrogated the TPA-induced adhesion. FACS analysis determined that TPA treatment does not change the cell surface expression of alpha2beta1 integrin over a 4-h time interval. However, alpha2beta1 levels were increased after 24 h of TPA treatment. Thus, the enhanced avidity of alpha2beta1-dependent cellular adhesion preceded the induction of alpha2beta1 cell surface expression. Northern blot analysis revealed that mRNA levels of both alpha2 and beta1 subunits were increased after exposure to TPA for 4 h, indicating that the induction of alpha2beta1 mRNA preceded that of its cell surface expression. This further suggested that the TPA-induced avidity of alpha2beta1 was independent of increased expression of alpha2beta1. Pretreatment of cells with the PKC inhibitor calphostin C partially antagonized the TPA-induced increase in expression of alpha2beta1 integrin expression and of alpha2beta1-mediated cellular adhesion. To identify a possible mechanism by which TPA could be acting to promote the rapid induction of alpha2beta1 adhesion, we treated the cells with the Rho-GTPase inhibitor Clostridium botulinumexotoxin C3. C3 inhibited TPA-induced adhesion to laminin and collagen I in a dose-dependant manner, suggesting a likely role for Rho in TPA-induced adhesion. Together, these results suggest that PKC can modulate the alpha2beta1-dependent adhesion of MCF-7 cells by two distinct mechanisms: altering the gene expression of integrins alpha2 and beta1 and altering the avidity of the alpha2beta1 integrin by a Rho-dependant mechanism.  相似文献   

2.
In order for T cells to exit the circulatory system, traverse the endothelial basement membrane, and arrive in target tissues, these cells must attach to and degrade basement membrane proteins. 12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to stimulate lymphoid cell adhesion to basement membrane components. We have used TPA to study the ability of human lymphoid cells to secrete type IV collagenases, enzymes capable of degrading basement membrane proteins. Here, we found that human primary T cells and H-9 lymphoid cells synthesize the 92 kDa type IV collagenase (gelatinase B) and TPA stimulates the synthesis and secretion of this protease. Peak TPA-stimulated gelatinase B secretion and mRNA accumulation were observed 9 hours after TPA treatment, while the peak adhesion to type IV collagen was observed only 3 hours after TPA treatment. The protein kinase C inhibitor, H-7, inhibited TPA-stimulated gelatinase B secretion. Both the primary T cells and H-9 lymphoid cells also expressed the mRNA for the tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that TPA - stimulated lymphoid cells adhere to type IV collagen and subsequently synthesize and secrete gelatinase B and TIMP-1. We conclude that lymphoid cell extravasation may involve cellular employment of adhesion mechanisms prior to degradation of the matrix, which is similar to the process of extravasation used by metastatic cells. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Cell populations often display heterogeneous behavior, including cell-to-cell variations in morphology, adhesion and spreading. However, better understanding the significance of such cell variations for the function of the population as a whole requires quantitative single-cell assays. To investigate adhesion variability in a CHO cell population in detail, we measured integrin-mediated adhesion to laminin and collagen, two ubiquitous ECM components, by AFM-based single-cell force spectroscopy (SCFS). CHO cells generally adhered more strongly to laminin than collagen but population adhesion force distributions to both ECM components were broad and partially overlapped. To determine the levels of laminin and collagen binding in individual cells directly, we alternatingly measured single cells on adjacent microstripes of collagen and laminin arrayed on the same adhesion substrate. In repeated measurements (≥60) individual cells showed a stable and ECM type-specific adhesion response. All tested cells bound laminin more strongly, but the scale of laminin over collagen binding varied between cells. Together, this demonstrates that adhesion levels to different ECM components are tightly yet differently set in each cell of the population. Adhesion variability to laminin was non-genetic and cell cycle-independent but scaled with the range of α6 integrin expression on the cell surface. Adhesive cell-to-cell variations due to varying receptor expression levels thus appear to be an inherent feature of cell populations and should to be considered when fully characterizing population adhesion. In this approach, SCFS performed on multifunctional adhesion substrates can provide quantitative single-cell information not obtainable from population-averaging measurements on homogeneous adhesion substrates.  相似文献   

4.
5.
Extracellular matrix influences many cellular events. In this study, we demonstrate that adhesion of human salivary gland (HSG) epithelial cells to fibronectin- or collagen I gel-coated substrates, mediated by β1 integrins, results in substantial alterations in protein and RNA expression profiles. The large numbers of changes in expression suggest that simply changing the adhesive substrate has basic effects on the regulation of cellular biosynthesis. Two-dimensional electrophoresis of [35S]methionine-labeled HSG cell proteins identified significant differences in the patterns of protein expression by cells cultured on nonprecoated substrates, collagen I gels or fibronectin. Thirty-two differentially expressed cDNA clones, which included both novel and previously sequenced genes, were up-regulated within 6 hr by culturing HSG cells on fibronectin or collagen I gels. Therefore, adhesion to collagen I or fibronectin resulted in rapid, widespread changes in cellular biosynthetic control. Expression of some genes was induced by ligation of β1 integrins with antifunctional antibodies, whereas the expression of other genes was not induced. Most of the differentially expressed genes were up-regulated by adhesion to both fibronectin- and collagen I gel-coated substrates, but a few genes were selectively up-regulated on only one substrate. Furthermore, the up-regulated expression of some genes was detected within 3 hr, whereas changes in others required 6 hr. Discrete adhesive substrates and integrin molecules differentially affected the expression of a significant number of genes, suggesting that the cellular responses to adhesion were triggered through several signaling pathways. J. Cell. Physiol. 175:163–173, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    The platelet response to collagen is a primary event in hemostasis and thrombosis, but the precise roles of the numerous identified platelet collagen receptors remain incompletely defined. Attention has recently focused on glycoprotein VI (GPVI), a receptor that is expressed on platelets in association with a signaling adapter, the Fc receptor gamma chain (Fc Rgamma). Genetic and pharmacologic loss of GPVI function results in loss of collagen signaling in platelets, but studies to date have failed to demonstrate that GPVI-Fc Rgamma expression is sufficient to confer collagen signaling responses. These results have led to the hypothesis that collagen responses mediated by GPVI-Fc Rgamma may require the collagen-binding integrin alpha2beta1 as a co-receptor, but this model has not been supported by a recent study of mouse platelets lacking alpha2beta1. In the present study we have used a novel anti-GPVI monoclonal antibody to measure the level of GPVI on human platelets and to guide the development of GPVI-expressing cell lines to assess the role of GPVI in mediating platelet collagen responses. GPVI receptor density on human platelets appears tightly regulated, is independent from the level of alpha2beta1 expression, and significantly exceeds that on previously characterized GPVI-expressing RBL-2H3 cells. Using newly generated GPVI-expressing RBL-2H3 cells with receptor densities equivalent to that on human platelets, we demonstrate that GPVI expression confers both adhesive and signaling responses to collagen in a graded fashion that is proportional to the GPVI receptor density. These results resolve some of the conflicting data regarding GPVI-collagen interactions and demonstrate that 1) GPVI-Fc Rgamma expression is sufficient to confer both adhesion and signaling responses to collagen, and 2) GPVI-mediated collagen responses are receptor density-dependent at the receptor levels expressed on human platelets.  相似文献   

    7.
    We have investigated the effects of various types of collagen and a tumor-promoting phorbol ester on intercellular contacts and the organization of actin in human amnion epithelial FL cells and mouse fibroblast 3T3-A31 cells. Our purpose was to investigate how modulation of interactions between cells and the substratum leads to alterations in intercellular contacts and organization of actin filaments. When cells were cultured on dishes coated with a solution containing type I collagen, but not type IV, changes were induced in the morphology of FL cells and their intercellular contacts. Type I collagen also caused changes in the organization of their actin filaments, although no such effects were observed with 3T3-A31 cells. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) caused morphological changes, dissociation of groups of cells, and reorganization of actin filaments in cultures of FL and 3T3-A31 cells. It also disrupted the sites of adhesion of FL cells to the substratum. Both type I collagen and TPA rapidly induced spreading of FL cells in the absence of serum. However, cis-hydroxyproline, known to inhibit secretion of collagen, did not suppress the TPA-induced dissociation of groups of FL cells. These results suggest that the interactions with type I collagen of epithelial FL cells, but not of fibroblastic 3T3-A31 cells, tend to disorganize cellular morphology, intercellular contacts, and actin filaments in ways similar to, but not directly related to, the effects of TPA.  相似文献   

    8.
    Cell shape regulates collagen type I expression in human tendon fibroblasts   总被引:1,自引:0,他引:1  
    Understanding the relationship between cell shape and cellular function is important for study of cell biology in general and for regulation of cell phenotype in tissue engineering in particular. In this study, microcontact printing technique was used to create cell-adhesive rectangular and circular islands. The rectangular islands had three aspect ratios: 19.6, 4.9, and 2.2, respectively, whereas circular islands had a diameter of 50 microm. Both rectangular and circular islands had the same area of 1960 microm(2). In culture, we found that human tendon fibroblasts (HTFs) assumed the shapes of these islands. Quantitative immunofluorescence measurement showed that more elongated cells expressed higher collagen type I than did less stretched cells even though cell spreading area was the same. This suggests that HTFs, which assume an elongated shape in vivo, have optimal morphology in terms of expression of collagen type I, which is a major component of normal tendons. Using immunohistochemistry along with cell traction force microscopy (CTFM), we further found that these HTFs with different shapes exhibited variations in actin cytoskeletal structure, spatial arrangement of focal adhesions, and spatial distribution and magnitude of cell traction forces. The changes in the actin cytoskeletal structure, focal adhesion distributions, and traction forces in cells with different shapes may be responsible for altered collagen expression, as they are known to be involved in cellular mechanotransduction.  相似文献   

    9.
    10.
    Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.  相似文献   

    11.
    ERK3 is an atypical Mitogen-activated protein kinase (MAPK6). Despite the fact that the Erk3 gene was originally identified in 1991, its function is still unknown. MK5 (MAP kinase- activated protein kinase 5) also called PRAK is the only known substrate for ERK3. Recently, it was found that group I p21 protein activated kinases (PAKs) are critical effectors of ERK3. PAKs link Rho family of GTPases to actin cytoskeletal dynamics and are known to be involved in the regulation of cell adhesion and migration. In this study we demonstrate that ERK3 protein levels are elevated as MDA-MB-231 breast cancer cells adhere to collagen I which is concomitant with changes in cellular morphology where cells become less well spread following nascent adhesion formation. During this early cellular adhesion event we observe that the cells retain protrusive activity while reducing overall cellular area. Interestingly exogenous expression of ERK3 delivers a comparable reduction in cell spread area, while depletion of ERK3 expression increases cell spread area. Importantly, we have detected a novel specific endogenous ERK3 localization at the cell periphery. Furthermore we find that ERK3 overexpressing cells exhibit a rounded morphology and increased cell migration speed. Surprisingly, exogenous expression of a kinase inactive mutant of ERK3 phenocopies ERK3 overexpression, suggesting a novel kinase independent function for ERK3. Taken together our data suggest that as cells initiate adhesion to matrix increasing levels of ERK3 at the cell periphery are required to orchestrate cell morphology changes which can then drive migratory behavior.  相似文献   

    12.
    The adhesive interactions of circulating blood cells are tightly regulated, receptor-mediated events. To establish a model for studies on regulation of cell adhesion, we have examined the adhesive properties of the HD11 chick myeloblast cell line. Function-perturbing antibodies were used to show that integrins containing the beta 1 subunit mediate HD11 cell attachment to several distinct extracellular matrix proteins, specifically fibronectin, collagen, vitronectin, and fibrinogen. This is the first evidence that an integrin heterodimer in the beta 1 family functions as a receptor for fibrinogen. While the alpha v beta 1 heterodimer has been shown to function as a vitronectin receptor on some cells, this heterodimer could not be detected on HD11 cells. Instead, results suggest that the beta 1 subunit associates with different, unidentified alpha subunit(s) to form receptors for vitronectin and fibrinogen. Results using function-blocking antibodies also demonstrate that on these cells, additional receptors for vitronectin are formed by alpha v beta 3 and alpha v associated with an unidentified 100-kD beta subunit. The adhesive interactions of HD11 cells with these extracellular matrix ligands were shown to be regulated by lipopolysaccharide treatment, making the HD11 cell line attractive for studies of mechanisms regulating cell adhesion. In contrast to primary macrophage which rapidly exhibit enhanced adhesion to laminin and collagen upon activation, activated HD11 cells exhibited reduced adhesion to most extracellular matrix constituents.  相似文献   

    13.
    Multipotent stem cells have been shown to be extremely useful in the field of regenerative medicine. However, in order to use these cells effectively for tissue regeneration, a number of variables must be taken into account. These variables include: the total volume and surface area of the implantation site, the mechanical properties of the tissue and the tissue microenvironment, which includes the amount of vascularization and the components of the extracellular matrix. Therefore, the materials being used to deliver these cells must be biocompatible with a defined chemical composition while maintaining a mechanical strength that mimics the host tissue. These materials must also be permeable to oxygen and nutrients to provide a favorable microenvironment for cells to attach and proliferate. Chitosan, a cationic polysaccharide with excellent biocompatibility, can be easily chemically modified and has a high affinity to bind with in vivo macromolecules. Chitosan mimics the glycosaminoglycan portion of the extracellular matrix, enabling it to function as a substrate for cell adhesion, migration and proliferation. In this study we utilize chitosan in the form of microspheres to deliver adipose-derived stem cells (ASC) into a collagen based three-dimensional scaffold. An ideal cell-to-microsphere ratio was determined with respect to incubation time and cell density to achieve maximum number of cells that could be loaded. Once ASC are seeded onto the chitosan microspheres (CSM), they are embedded in a collagen scaffold and can be maintained in culture for extended periods. In summary, this study provides a method to precisely deliver stem cells within a three dimensional biomaterial scaffold.  相似文献   

    14.
    Normal human melanocytes, which rarely undergo mitosis in vivo, require many growth factors and growth-stimulating agents in vitro, such as basic fibroblast growth factor (bFGF) and cyclic adenosine monophosphate-stimulating agents or 12-0-tetrade-canoylphorbol 13-acetate (TPA), to proliferate. TPA, known as a protein kinase C (PKC)-activator, supports normal human melanocyte growth and influences on melanocyte dendrite formation. We have further confirmed the role of the PKC-mediated pathway in the TPA-dependent melanocyte functions—i.e., proliferation, morphology, and adhesion—using Calphostin C (CPC), a highly specific PKC inhibitor. Melanocytes require the continual presence of TPA for growth in culture. Addition of 8 nM TPA to the medium increased melanocyte growth by 198.4 ± 2.3% of that without TPA. The growth induction by TPA was suppressed by the addition of 10 nM CPC at the level comparable to that without TPA without any morphological alterations. Significant levels of PKC were detected in melanocytes chronically exposed to TPA as determined by Western blotting. A long-term exposure to TPA (more than 5 days) resulted in marked reduction of melanocyte adhesion to plastic cell culture dishes, both uncoated and coated with type IV collagen. By the addition of 10 nM CPC in the adhesion assay, the melanocyte adhesion was further inhibited in both conditions. These results indicated the critical involvement of PKC activation in the TPA-dependent melanocyte functions. Continuous activation of PKC by TPA is implicated in melanocyte growth stimulation. TPA also has effects on melanocyte morphology, causing the formation of long extended dendrites with little cytoplasm. However, inhibition of PKC activation by CPC does not affect the melanocyte morphology, and CPC reduces melanocyte adhesion to uncoated or type IV collagen coated plastic cell culture dishes.  相似文献   

    15.
    Conventional protocols for differentiating human induced-pluripotent stem cells (hiPSCs) into smooth-muscle cells (SMCs) can be inefficient and generally fail to yield cells with a specific SMC phenotype (i.e., contractile or synthetic SMCs). Here, we present two novel hiPSC-SMC differentiation protocols that yield SMCs with predominantly contractile or synthetic phenotypes. Flow cytometry analyses of smooth-muscle actin (SMA) expression indicated that ~45% of the cells obtained with each protocol assumed an SMC phenotype, and that the populations could be purified to ~95% via metabolic selection. Assessments of cellular mRNA and/or protein levels indicated that SMA, myosin heavy chain II, collagen 1, calponin, transgelin, connexin 43, and vimentin expression in the SMCs obtained via the Contractile SMC protocol and in SMCs differentiated via a traditional protocol were similar, while SMCs produced via the Sythetic SMC protocol expressed less calponin, more collagen 1, and more connexin 43. Differences were also observed in functional assessments of the two SMC populations: the two-dimensional surface area of Contractile SMCs declined more extensively (to 12% versus 44% of original size) in response to carbachol treatment, while quantification of cell migration and proliferation were greater in Synthetic SMCs. Collectively, these data demonstrate that our novel differentiation protocols can efficiently generate SMCs from hiPSCs.  相似文献   

    16.
    Production of procollagenase by cultured human keratinocytes   总被引:4,自引:0,他引:4  
    Using a collagen film assay utilizing 14C-labeled type I collagen, we demonstrated that cultured human keratinocytes produced a procollagenase after treatment with the tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). Production of collagenase paralleled alterations in cellular morphology induced by TPA. When procollagenase was immunoprecipitated with antibody to human fibroblast collagenase and analyzed on sodium dodecyl sulfate-polyacrylamide gels, the zymogen was revealed as a 56- and 51-kDa doublet. The keratinocyte-derived collagenase was a neutral metalloprotease, required activation with trypsin for detection in the collagenase assay and produced the characteristic three-quarter and one-quarter length collagen cleavage products when incubated with type I collagen at 25 degrees C. The enzyme was inhibited by serum and cysteine and was largely unaffected by serine, thiol, and carboxyl protease inhibitors. Cycloheximide inhibited the TPA-induced production of collagenase, suggesting that the procollagenase was not stored preformed in the keratinocytes. Keratinocytes treated with a tumor-promoting analogue of TPA also produced collagenase, but cells treated with cytochalasin B, interleukin-1, or two non-tumor promoting phorbol esters did not. Keratinocyte-derived collagenase may play a role in wound healing and morphogenesis.  相似文献   

    17.
    18.
    We recently reported that the myristoylated peptide N-myristoyl-Lys-Arg-Thr-Leu-Arg (N-m-KRTLR) is a novel protein kinase C inhibitor. In this study, we investigated the biological effects of N-m-KRTLR using as an in vitro model the induction of the IL-2 receptor and IL-2 secretion by Jurkat cells in response to stimulation with 12-O tetradecanoylphorbol-13-acetate (TPA) plus phytohemagglutinin (PHA) and TPA plus OKT3 mAb. N-m-KRTLR significantly suppressed induction of the IL-2 receptor on the surface of the Jurkat cells by TPA plus either PHA or OKT3 mAb. Furthermore, N-m-KRTLR inhibited the production and release of IL-2 from cultured Jurkat cells stimulated with TPA plus either PHA or OKT3 mAb. Similarly, this peptide significantly inhibited the IL-2 production in normal human peripheral blood mononuclear cells in response to stimulation by TPA and PHA. In contrast, this peptide did not affect expression of the CD3 complex on the surface of the Jurkat cells either alone or in the presence of TPA or PHA. Furthermore, N-m-KRTLR did not interfere with the spontaneous proliferation of the Jurkat cells, and its effects on IL-2 secretion and IL-2 receptor expression in the Jurkat cells were evident without loss of cell viability. These results suggest that the novel protein kinase C inhibitor N-m-KRTLR may selectively inhibit certain activation pathways of Jurkat cells and indicate the usefulness of N-m-KRTLR in the analysis of discrete events in T cell activation.  相似文献   

    19.
    Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short alpha and beta cytoplasmic tails will help to elucidate the molecular mechanisms by which integrins mediate bi-directional signaling across the plasma membrane. Integrin alpha2beta1 is a major collagen receptor but to date, only few proteins have been shown to interact with the alpha2 cytoplasmic tail or with the alpha2beta1 complex. In order to identify novel binding partners of a alpha2beta1cytoplasmic domain complex, we have generated recombinant GST-fusion proteins, incorporating the leucine zipper heterodimerization cassettes of Jun and Fos. To ascertain proper functionality of the recombinant proteins, interaction with natural binding partners was tested. GST-alpha2 and GST-Jun alpha2 bound His-tagged calreticulin while GST-beta1 and GST-Fos beta1 proteins bound talin. In screening assays for novel binding partners, the immobilized GST-Jun alpha2/GST-Fos beta1 heterodimeric complex, but not the single subunits, interacted specifically with endothelial cell-derived vimentin. Vimentin, an abundant intermediate filament protein, has previously been shown to co-localize with alphavbeta3-positive focal contacts. Here, we provide evidence that this interaction also occurs with alpha2beta1-enriched focal adhesions and we further show that this association is lost after prolonged adhesion of endothelial cells to collagen.  相似文献   

    20.
    Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号