共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma 总被引:9,自引:0,他引:9
Nencioni A Grünebach F Zobywlaski A Denzlinger C Brugger W Brossart P 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(3):1228-1235
Dendritic cells (DC) are the most potent APCs known that play a key role for the initiation of immune responses. Ag presentation to T lymphocytes is likely a constitutive function of DC that continues during the steady state. This raises the question of which mechanism(s) determines whether the final outcome of Ag presentation will be induction of immunity or of tolerance. In this regard, the mechanisms controlling DC immunogenicity still remain largely uncharacterized. In this paper we report that the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma), which has anti-inflammatory properties, redirects DC toward a less stimulatory mode. We show that activation of PPAR-gamma during DC differentiation profoundly affects the expression of costimulatory molecules and of the DC hallmarker CD1a. PPAR-gamma activation in DC resulted in a reduced capacity to activate lymphocyte proliferation and to prime Ag-specific CTL responses. This effect might depend on the decreased expression of costimulatory molecules and on the impaired cytokine secretion, but not on increased IL-10 production, because this was reduced by PPAR-gamma activators. Moreover, activation of PPAR-gamma in DC inhibited the expression of EBI1 ligand chemokine and CCR7, both playing a pivotal role for DC migration to the lymph nodes. These effects were accompanied by down-regulation of LPS-induced nuclear localized RelB protein, which was shown to be important for DC differentiation and function. Our results suggest a novel regulatory pathway for DC function that could contribute to the regulated balance between immunity induction and self-tolerance maintenance. 相似文献
2.
3.
Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists 总被引:35,自引:0,他引:35
Way JM Görgün CZ Tong Q Uysal KT Brown KK Harrington WW Oliver WR Willson TM Kliewer SA Hotamisligil GS 《The Journal of biological chemistry》2001,276(28):25651-25653
Elevated levels of the hormone resistin, which is secreted by fat cells, are proposed to cause insulin resistance and to serve as a link between obesity and type 2 diabetes. In this report we show that resistin expression is significantly decreased in the white adipose tissue of several different models of obesity including the ob/ob, db/db, tub/tub, and KKA(y) mice compared with their lean counterparts. Furthermore, in response to several different classes of antidiabetic peroxisome proliferator-activated receptor gamma agonists, adipose tissue resistin expression is increased in both ob/ob mice and Zucker diabetic fatty rats. These data demonstrate that experimental obesity in rodents is associated with severely defective resistin expression, and decreases in resistin expression are not required for the antidiabetic actions of peroxisome proliferator-activated receptor gamma agonists. 相似文献
4.
Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists 总被引:6,自引:0,他引:6
Davies SS Pontsler AV Marathe GK Harrison KA Murphy RC Hinshaw JC Prestwich GD Hilaire AS Prescott SM Zimmerman GA McIntyre TM 《The Journal of biological chemistry》2001,276(19):16015-16023
Synthetic high affinity peroxisome proliferator-activated receptor (PPAR) agonists are known, but biologic ligands are of low affinity. Oxidized low density lipoprotein (oxLDL) is inflammatory and signals through PPARs. We showed, by phospholipase A(1) digestion, that PPARgamma agonists in oxLDL arise from the small pool of alkyl phosphatidylcholines in LDL. We identified an abundant oxidatively fragmented alkyl phospholipid in oxLDL, hexadecyl azelaoyl phosphatidylcholine (azPC), as a high affinity ligand and agonist for PPARgamma. [(3)H]azPC bound recombinant PPARgamma with an affinity (K(d)((app)) approximately 40 nm) that was equivalent to rosiglitazone (BRL49653), and competition with rosiglitazone showed that binding occurred in the ligand-binding pocket. azPC induced PPRE reporter gene expression, as did rosiglitazone, with a half-maximal effect at 100 nm. Overexpression of PPARalpha or PPARgamma revealed that azPC was a specific PPARgamma agonist. The scavenger receptor CD36 is encoded by a PPRE-responsive gene, and azPC enhanced expression of CD36 in primary human monocytes. We found that anti-CD36 inhibited azPC uptake, and it inhibited PPRE reporter induction. Results with a small molecule phospholipid flippase mimetic suggest azPC acts intracellularly and that cellular azPC accumulation was efficient. Thus, certain alkyl phospholipid oxidation products in oxLDL are specific, high affinity extracellular ligands and agonists for PPARgamma that induce PPAR-responsive genes. 相似文献
5.
Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin 总被引:1,自引:0,他引:1 下载免费PDF全文
Studies have demonstrated cross talk between beta-catenin and peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways. Specifically, activation of PPARgamma induces the proteasomal degradation of beta-catenin in cells that express an adenomatous polyposis coli-containing destruction complex. In contrast, oncogenic beta-catenin is resistant to such degradation and inhibits the expression of PPARgamma target genes. In the present studies, we demonstrate a functional interaction between beta-catenin and PPARgamma that involves the T-cell factor (TCF)/lymphocyte enhancer factor (LEF) binding domain of beta-catenin and a catenin binding domain (CBD) within PPARgamma. Mutation of K312 and K435 in the TCF/LEF binding domain of an oncogenic beta-catenin (S37A) significantly reduces its ability to interact with and inhibit the activity of PPARgamma. Furthermore, these mutations render S37A beta-catenin susceptible to proteasomal degradation in response to activation of PPARgamma. Mutation of F372 within the CBD (helices 7 and 8) of PPARgamma disrupts its binding to beta-catenin and significantly reduces the ability of PPARgamma to induce the proteasomal degradation of beta-catenin. We suggest that in normal cells, PPARgamma can function to suppress tumorigenesis and/or Wnt signaling by targeting phosphorylated beta-catenin to the proteasome through a process involving its CBD. In contrast, oncogenic beta-catenin resists proteasomal degradation by inhibiting PPARgamma activity, which requires its TCF/LEF binding domain. 相似文献
6.
7.
8.
Hunter JG van Delft MF Rachubinski RA Capone JP 《The Journal of biological chemistry》2001,276(41):38297-38306
9.
10.
11.
Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression 总被引:2,自引:0,他引:2
Yue L Rasouli N Ranganathan G Kern PA Mazzone T 《The Journal of biological chemistry》2004,279(46):47626-47632
ApoE is expressed in multiple mammalian cell types in which it supports cellular differentiated function. In this report we demonstrate that apoE expression in adipocytes is regulated by factors involved in modulating systemic insulin sensitivity. Systemic treatment with pioglitazone increased systemic insulin sensitivity and increased apoE mRNA levels in adipose tissue by 2-3-fold. Treatment of cultured 3T3-L1 adipocytes with ciglitazone increased apoE mRNA levels by 2-4-fold in a dose-dependent manner and increased apoE secretion from cells. Conversely, treatment of adipocytes with tumor necrosis factor (TNF) alpha reduced apoE mRNA levels and apoE secretion by 60%. Neither insulin nor a peroxisome proliferator-activated receptor (PPAR) alpha agonist regulated adipocyte apoE gene expression. In addition, treatment of human monocyte-derived macrophages with ciglitazone did not regulate expression of apoE. Additional analyses using reporter genes indicated that the effect of TNFalpha and PPARgamma agonists on the apoE gene was mediated via distinct gene control elements. The TNFalpha effect was mediated by elements within the proximal promoter, whereas the PPARgamma effect was mediated by elements within a downstream enhancer. However, the addition of TNFalpha substantially reduced the absolute levels of apoE reporter gene response even in the presence of ciglitazone. These results indicate for the first time that adipose tissue expression of apoE is modulated by physiologic regulators of insulin sensitivity. 相似文献
12.
Role of peroxisome proliferator-activated receptor gamma in glucose-induced insulin secretion 总被引:4,自引:0,他引:4
Peroxisome proliferator-activated receptor (PPAR) isoforms (α and γ) are known to beexpressed in pancreatic islets as well as in insulin-producing cell lines.Ligands of PPAR have been shoWn toenhance glucose-induced insulin secretion in rat pancreatic islets.However,their effect on insulin secretionis still unclear.To understand the molecular mechanism by which PPAR7 exerts its effect on glucose-induced insulin secretion,we examined the endogenous activity of PPAR isoforms,and studied the PPARyfunction and its target gene expression in INS-1 cells.We found that:(1)endogenous PPARγ was activatedin a ligand-dependent manner in INS-1 cells;(2)overexpression of PPARy in the absence of PPARγ ligandsenhanced glucose-induced insulin secretion,which indicates that the increased glucose-induced insulin secretionis a PPARγ-mediated event;(3)the addition of both PPARγ and retinoid X receptor (RXR) ligands showed asynergistic effect on the augmentation of reporter activity,suggesting that the hetero-dimerization of PPAR7and RXR is required for the regulation of the target genes;(4)PPARs upregulated both the glucose transporter2 (GLUT2) and Cbl-associated protein (CAP) genes in INS-1 cells.Our findings suggest an importantmechanistic pathway in which PPARγ enhances glucose-induced insulin secretion by activating the expressionof GLUT2 and CAP genes in a ligand-dependent manner. 相似文献
13.
14.
Azadeh Matin Munikumar Reddy Doddareddy Navnath Gavande Srinivas Nammi Paul W. Groundwater Rebecca H. Roubin David E. Hibbs 《Bioorganic & medicinal chemistry》2013,21(3):766-778
Twenty three dual PPARα and γ molecules of natural product origin, previously reported by our group, were further investigated for pan PPAR transactivation against PPARδ. The in vitro cell toxicity profile, as well as, in silico study of the most active molecules within this new class of pan PPAR agonists are also described. 3′,5′ Dimethoxy-7 hydroxyisoflavone 6, Ψ-baptigenin 7, 4′ fluoro-7 hydroxyisoflavone 8, and 3′ methoxy-7 hydroxyisoflavone 9 were identified as the most potent molecules studied within the set compared to the commercially available pan PPAR agonist, bezafibrate 1. These novel active molecules may thus be useful as future leads in PPAR-related disorders, including type II diabetes mellitus and metabolic syndrome. 相似文献
15.
Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity 总被引:4,自引:0,他引:4
Fukuen S Iwaki M Yasui A Makishima M Matsuda M Shimomura I 《The Journal of biological chemistry》2005,280(25):23653-23659
16.
Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists 总被引:13,自引:0,他引:13
Nawrocki AR Rajala MW Tomas E Pajvani UB Saha AK Trumbauer ME Pang Z Chen AS Ruderman NB Chen H Rossetti L Scherer PE 《The Journal of biological chemistry》2006,281(5):2654-2660
The adipose tissue-derived hormone adiponectin improves insulin sensitivity and its circulating levels are decreased in obesity-induced insulin resistance. Here, we report the generation of a mouse line with a genomic disruption of the adiponectin locus. We aimed to identify whether these mice develop insulin resistance and which are the primary target tissues affected in this model. Using euglycemic/insulin clamp studies, we demonstrate that these mice display severe hepatic but not peripheral insulin resistance. Furthermore, we wanted to test whether the lack of adiponectin magnifies the impairments of glucose homeostasis in the context of a dietary challenge. When exposed to high fat diet, adiponectin null mice rapidly develop glucose intolerance. Specific PPARgamma agonists such as thiazolidinediones (TZDs) improve insulin sensitivity by mechanisms largely unknown. Circulating adiponectin levels are significantly up-regulated in vivo upon activation of PPARgamma. Both TZDs and adiponectin have been shown to activate AMP-activated protein kinase (AMPK) in the same target tissues. We wanted to address whether the ability of TZDs to improve glucose tolerance is dependent on adiponectin and whether this improvement involved AMPK activation. We demonstrate that the ability of PPARgamma agonists to improve glucose tolerance in ob/ob mice lacking adiponectin is diminished. Adiponectin is required for the activation of AMPK upon TZD administration in both liver and muscle. In summary, adiponectin is an important contributor to PPARgamma-mediated improvements in glucose tolerance through mechanisms that involve the activation of the AMPK pathway. 相似文献
17.
Huin C Schohn H Hatier R Bentejac M Antunes L Plénat F Bugaut M Dauça M 《Biology of the cell / under the auspices of the European Cell Biology Organization》2002,94(1):15-27
The expression of peroxisome proliferator-activated receptors alpha (PPARalpha) and gamma (PPARgamma) was studied in the human adenocarcinoma Caco-2 cells induced to differentiate by long term culture (15 days). The differentiation of Caco-2 cells was attested by increases in the activities of sucrase-isomaltase and alkaline phosphatase (two brush border enzymes), fatty acyl-CoA oxidase (AOX) and catalase (two peroxisomal enzymes), by an elevation in the protein levels of villin (a brush border molecular marker), AOX, peroxisomal bifunctional enzyme (PBE), catalase and peroxisomal membrane protein of 70 kDa (PMP70). and by the appearance of peroxisomes. The expression of PPARalpha and PPARgamma was investigated by Western blotting, immunocytochemistry, Northern blotting and S1 nuclease protection assay during the differentiation of Caco-2 cells. The protein levels of PPARalpha, PPARgamma, and PPARgamma2 increased gradually during the time-course of Caco-2 cell differentiation. Immunocytochemistry revealed that PPARalpha and gamma were localized in cell nuclei. The PPARgamma1 protein was encoded by PPARgamma3 mRNA because no signal was obtained for PPARgamma1 mRNA using a specific probe in S1 nuclease protection assay. The amount of PPARgamma3 mRNA increased concomitantly to the resulting PPARgamma1 protein. On the other hand, the mRNA of PPARalpha and PPARgamma2 were not significantly changed, suggesting that the increase in their respective protein was due to an elevation of the translational rate. The role played by the PPAR subtypes in Caco-2 cell differentiation is discussed. 相似文献
18.
19.
Yosuke Toyota Sayaka Nomura Makoto Makishima Yuichi Hashimoto Minoru Ishikawa 《Bioorganic & medicinal chemistry letters》2017,27(12):2776-2780
Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC50: 14 μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. 相似文献
20.