首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focuses on the mixed-chain lipid myristoylpalmitoylphosphatidylcholine (MPPC) near full hydration. The lipid, synthesized according to the procedure of (Mason et al., 1981a, has a low degree of acyl chain migration. When MPPC is temperature-jumped (T-jumped) from the L alpha phase (T = 38 degrees C) to T = 20 degrees C or below, a subgel phase forms; this formation takes less than 1 h at a temperature below T = 12 degrees C. The subgel remains stable up to T = 29 degrees C. When MPPC is T-jumped from the L alpha phase to T = 24 degrees C or above, a ripple phase forms with coexisting ripple wavelengths of 240 A and 130 A. In contrast, when MPPC is melted from the subgel phase, the ripple phase is characterized by bilayers having a single ripple wavelength of 130 A. In agreement with earlier studies (Stumpel et al., 1983; Serrallach et al., 1984. Structure and thermotropic properties of mixed-chain phosphatidylcholine bilayer membranes. Biochemistry 23:713-720.), no stable gel phase was observed. Instead, an ill-defined low-angle X-ray pattern is initially observed, which gradually transforms into the subgel phase below 20 degrees C, or into the ripple phase above 24 degrees C. In the wide-angle X-ray diffraction, a single peak is observed, similar to the ripple phase wide-angle pattern, that either persists above 24 degrees C or transforms into a multi-peaked subgel wide-angle pattern below 20 degrees C. The absence of a gel phase can be understood phenomenologically as the relative dominance of the subgel phase in mixed-chain PCs compared to same-chain PCs. The subgel structure and molecular interactions responsible for this comparative behavior are interesting open issues.  相似文献   

2.
We examined how morphology of bilayer assemblies affects the kinetics of the subgel phase formation in dimyristoylphosphatidylglycerol (DMPG) bilayers, which change their morphology depending on NaCl concentration. Quantitative analysis of the kinetics revealed that in flat sheet-like structures (bilayer sheets) the subgel phase forms in a simple two-state manner with the relaxation time of about 3 min at -10 degrees C while in vesicles it forms much slower under a multi-step process. Freeze-etch electron microscopic observations suggested that the kinetics of the subgel phase formation is directly correlated with the morphology of bilayer assemblies. It is likely that the bilayer sheet structure is more favorable to the subgel phase formation in DMPG bilayers than the vesicular structure.  相似文献   

3.
Suspensions of dipalmitoylphosphatidylglycerol (DPPG) have been analyzed by differential scanning calorimetry, equilibrium and differential scanning dilatometry, and X-ray diffraction techniques. After the DPPG suspensions are stored several days at 2 degrees C, a new phase transition is observed at a lower temperature than either the main transition or the pretransition. This subtransition has an enthalpy of about 6 kcal/mol and occurs at about 20 degrees C, the exact temperature depending on the buffer used. The lipid partial specific volume increases by 0.035 mL/g upon warming through the subtransition. X-ray diffraction patterns from suspensions in the subgel phase contain orders of a lamellar repeat and several additional sharp and broad wide-angle reflections between 8 and 2 A. As the water content in the specimen is reduced, the lamellar repeat period decreases, whereas the spacings and intensities of these additional wide-angle reflections are unchanged. These data indicate that on incubation at 2 degrees C the lipid molecules crystallize in the plane of each bilayer. X-ray experiments also show that this subgel phase converts to the normal L beta' gel phase above the subtransition.  相似文献   

4.
R N Lewis  R N McElhaney 《Biochemistry》1990,29(34):7946-7953
The subgel phases of a homologous series of saturated straight-chain diacylphosphatidylcholines with hydrocarbon chains consisting of 10-18 carbon atoms were studied by Fourier-transform infrared spectroscopy. All of these lipids initially form a subgel phase which is spectroscopically similar to that obtained when fully hydrated multilamellar dispersions of dipalmitoylphosphatidylcholine are incubated at 0-4 degrees C for 2-4 days. However, further low-temperature incubation of those phosphatidylcholines with acyl chains of 16 or fewer carbon atoms results in the sequential formation of 1 or more additional, spectroscopically distinct subgel phases, with the number of such phases increasing as hydrocarbon chain length decreases. Our data indicate that the formation of all of these subgel phases involves both reorientation of the acyl chains and major changes in hydration and/or hydrogen-bonding interactions at the polar/apolar interfacial region of the lipid bilayer. We suggest that the driving force behind the formation of these Lc phases is the formation of an extended hydrogen-bonding network in the interfacial region of the bilayer and that the optimization of this network probably requires some distortion of the optimal packing of the acyl chains. As a result, an increase in acyl chain length makes the formation of these Lc phases less favorable and eventually prevents optimization of the hydrogen-bonding network at the bilayer polar/apolar interface.  相似文献   

5.
A combination of differential scanning calorimetry (DSC) and X-ray diffraction have been used to study the kinetics of formation and the structure of the low-temperature phase of 1-stearoyl-lysophosphatidylcholine (18:0-lysoPC). For water contents greater than 40 weight %, DSC shows a sharp endothermic transition at 27 degrees C (delta H = 6.75 kcal/mol) corresponding to a low-temperature phase----micelle transition. This sharp transition is not reversible, but is regenerated in a time and temperature-dependent manner. For example, with incubation at 0 degrees C the maximum transition enthalpy (delta H = 6.75 kcal/mol) is generated in about 45 min after an initial slow nucleation process of approx. 20 min. The kinetics of formation of the low-temperature phase is accelerated at lower temperatures and may be related to the disruption of 18:0-lysoPC micelles by ice crystal formation. X-ray diffraction patterns of 18:0-lysoPC recorded at 10 degrees C over the hydration range 20-80% are characteristic of a lamellar gel phase with tilted hydrocarbon chains with the bilayer repeat distance increasing from 47.6 A at 20% hydration to a maximum of 59.4 A at 39% hydration. At this maximum hydration, approx. 19 molecules of water are bound per molecule of 18:0-lysoPC. Electron density profiles show a phosphate-phosphate distance of 30 A, indicating an interdigitated lamellar gel phase for 18:0-lysoPC at all hydration values. The angle of chain tilt is calculated to be between 20 and 30 degrees. For water contents greater than 40%, this interdigitated lamellar phase converts to the micellar phase at 27 degrees C in a kinetically fast process, while the reverse (micelle----interdigitated bilayer) transition is a kinetically slower process (see also Wu, W. and Huang, C. (1983) Biochemistry 22, 5068-5073).  相似文献   

6.
Dilatometric studies of the subtransition in dipalmitoylphosphatidylcholine   总被引:4,自引:0,他引:4  
J F Nagle  D A Wilkinson 《Biochemistry》1982,21(16):3817-3821
The phase transition between the newly discovered low-temperature subgel phase and the gel phase of dipalmitoylphosphatidylcholine has been studied by using dilatometry. Equilibrium measurements show that the subtransition upon heating is centered at 13.5 degrees C, has a dilatometric half-width of 0.6 degree C, and comprises a specific volume change of 0.009 mL/g (about one-fourth the size of the main transition). When the gel phase is cooled, the subtransition does not occur until below 5 degrees C. The rate of formation as a function of incubation temperature for 1 degree C less than TI less than 6 degrees C was determined; it is not well fit by quantitative theories based upon homogeneous nucleation. However, some form of nucleation is present since temperature-jump studies show that once the subgel phase has started to form, it continues to grow in the range 6 degrees C less than TJ less than 12.8 degrees C. Thus, the true transition temperature lies between 12.8 and 13.5 degrees C, but nucleation of the subgel phase is severely retarded above 6 degrees C, leading to the large hysteresis observed upon cooling.  相似文献   

7.
The structure of the subgel phase of dipalmitoylphosphatidylglycerol (DPPG) has been analyzed by X-ray diffraction techniques. Diffraction recorded from highly oriented DPPG specimens in the subgel phase extends to 2-A resolution. There are sharp lamellar reflections on the meridian, and other reflections lie on a series of wide-angle lattice lines parallel to the meridian and crossing the equator in the range of 8-2 A. The wide-angle lattice lines consist of radially sharp reflections centered on the equator of the X-ray film and also a series of broader, off-equatorial maxima. The lattice lines indicate that the DPPG molecules in each bilayer crystallize in a two-dimensional oblique lattice with dimensions a = 5.50 A, b = 7.96 A, and gamma = 100.5 degrees. These oblique lattices are not regularly aligned from bilayer to bilayer. Analysis of the lamellar diffraction shows that the bilayer has about the same thickness in the subgel and gel (L beta') phases. In the direction normal to the hydrocarbon chains, the chains are significantly closer together in the subgel phase as compared to the normal L beta' gel phase but have about the same separation as the chains in polyethylene and the crystalline n-alkanes. The bilayer thickness, area per lipid molecule, and intensity distribution along the lattice lines all indicate that in the subgel phase the hydrocarbon chains are tilted between 30 and 35 degrees from the normal to the bilayer plane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The solvation effects of dimethyl sulfoxide (DMSO) on the phase stability of dimyristoylphosphatidylcholine (DMPC) have been fully characterized using differential scanning calorimetry (DSC) and fluorescence spectroscopy with 1,6-diphenyl-1,3,5-hexatriene (DPH). The temperatures of the sub-, pre-, and main transitions of DMPC were found to increase linearly with increasing mole fraction of DMSO up to mole fraction X=0.13 DMSO/H(2)O. Beyond X=0.13, the pre-transition peak started to merge with the peak representing the main transition. Simultaneously, the subtransition peak began to disappear as its transition temperature also decreased. At X=0.18, with both the subtransition and pre-transition absent, the main transition between the planar gel and the liquid-crystalline phase was observed at 30.3 degrees C. Transition enthalpy values indicated that the subgel, planar gel and rippled gel phases are most stable at X=0.11, 0.16 and 0.20 DMSO/H(2)O, respectively. This demonstrates that DMSO exerts distinct effects on each respective phase and corresponding transition. Temperature-dependent fluorescence emission scans show an increase in hydration as the system proceeds from the subgel phase all the way to the liquid-crystalline phase and correlated well with the effects of DMSO on the transition temperatures of DMPC observed in our calorimetry data. Initial observations for the sub- and main transition are further confirmed by fluorescence anisotropy using DPH as a probe. The results illustrate the differences in the microviscosity of each phase and how DMSO affects the phase transitions. Ultimately, our results suggest the most likely mechanism governing the biological actions of DMSO may involve the regulation of the solvation effects of water on the phospholipid bilayer.  相似文献   

9.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

10.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

11.
Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure (up to 46 kbar) for samples incubated at 2°C and for nonincubated DPPC samples subjected to equally high pressure. The nature of the transition from the GII gel phase of the hydrated lipid into the subgel phase on incubation is entirely different from that of the transition from the GII gel phase into the GIII gel phase of the nonincubated lipid. The GIII gel phase has a monoclinic interchain packing, while the subgel phase exhibits a triclinic interchain structure. It is shown that pressure cannot induce the transition from the GII gel phase to the subgel phase; however, it does stabilize the subgel phase above the subtransition temperature. The mechanism for the formation of the subgel phase and the complex phase behavior of the gel phase of DPPC are rationalized in terms of the dynamic properties of the acyl chains of the lipid molecule.  相似文献   

12.
The bilayer phase transitions of palmitoylstearoyl-phosphatidylcholine (PSPC), diheptadecanoyl-PC (C17PC) and stearoylpalmitoyl-PC (SPPC) which have the same total carbon numbers in the two acyl chains were observed by differential scanning calorimetry and high-pressure optical method. As the temperature increased, these bilayers exhibited four phases of the subgel (Lc), lamellar gel (L beta'), ripple gel (P beta') and liquid crystal (L alpha), in turn. The Lc phase was observed only in the first heating scan after cold storage. The temperatures of the phase transitions were almost linearly elevated by applying pressure. The temperature-pressure phase diagrams and the thermodynamic quantities associated with the phase transitions were compared among the lipid bilayers. For all the bilayers studied, the pressure-induced interdigitated gel (L beta I) phase appeared above the critical interdigitation pressure (CIP) between the L beta' and P beta' phases. The CIPs for the PSPC, C17PC and SPPC bilayers were found to be 50.6, 79.1 and 93.0 MPa, respectively. Contribution of two acyl chains to thermodynamic properties for the phase transitions of asymmetric PSPC and SPPC bilayers was not even. The sn-2 acyl chain lengths of asymmetric PCs governed primarily the bilayer properties. The fluorescence spectra of Prodan in lipid bilayers showed the emission maxima characteristic of bilayer phases, which were dependent on the location of Prodan in the bilayers. Second derivative of fluorescent spectrum exhibited the original emission spectrum of Prodan to be composed of the distribution of Prodan into multiple locations in the lipid bilayer. The F'497/F'430 value, a ratio of second derivative of fluorescence intensity at 497 nm to that at 430 nm, is decisive evidence whether bilayer interdigitation will occur. With respect to the L beta'/L beta I phase transition in the SPPC bilayer, the emission maximum of Prodan exhibited the narrow-range red-shift from 441 to 449 nm, indicating that the L beta I phase in the SPPC bilayer has a less polar "pocket" formed by a space between uneven terminal methyl ends of the sn-1 and sn-2 chains, in which the Prodan molecule remains stably.  相似文献   

13.
The interaction of L-arginine with unilamellar liposomes of dihexadecylphosphate sodium salt (DHP-Na) has been investigated using calorimetric, light scattering, fluorescence spectroscopy and zeta-potential techniques. Heating from room temperature, the bilayer exhibits a phase transition from a subgel (L(c)) to the gel (L(beta')) phase as well as a pre-transition (L(beta')-P(beta')), which is followed by the main lipid phase transition (P(beta')-L(alpha)). Direct studies of the interaction of L-arginine with the DHP-Na bilayers via isothermal titration calorimetry at 27 degrees C depict significant differences between samples in the L(c) and the L(beta') phases reflecting the effect of molecular organization of the lipids upon the interaction. While L-arginine has only a small impact upon the L(c) to L(beta') phase transition, it affects more significantly the transition temperature as well as the shape of the DSC peaks of the main lipid phase transition. Based on fluorescence and zeta-potential studies, the permeability of L-arginine through the liposomal membrane is higher within the temperature range of the main lipid phase transition. Encapsulated l-arginine obstructs the formation of the subgel phase.  相似文献   

14.
High resolution dynamics and structural information has been resolved from 2H solid-state NMR spectra of the Val-1 side-chain of the gramicidin channel in a lipid bilayer. Both powder pattern lineshapes and spectra from uniformly aligned samples of gramicidin in lipid bilayers have been analyzed to achieve a fully consistant interpretation of the data. Torsional motions about the C alpha C beta axis (chi 1) are shown to be three-state jumps in which the occupancy of the states is given by the ratio, 75:15:10 for the chi 1 angles of 184 degrees:304 degrees:64 degrees. The dominant conformer is also the most common conformation observed for valines in well defined protein structures. The distribution of conformational substates that represents the chi 1 dynamics appears to be largely independent of the lipid phase transition and the hydration of the sample. However, there is evidence that the residence time between jumps is dependent on the lipid phase transition. Although this time is shown to be approximately 1 microseconds below the phase transition temperature, it is in the fast exchange limit above the transition temperature.  相似文献   

15.
Structures of lamellar phases in aqueous dispersions of diisoacylphosphatidylcholines (17iPC and 20iPC) were determined by x-ray diffraction methods. In agreement with previous DSC studies, subgel, gel, and liquid crystal phases were observed in each homolog. The subgel Lc(c') phases of both homologs show significant two-dimensional long range order and can be described by rectangular lattices. The dimensions of the two rectangular unit cells differ in that the side chains are canted (approximately 33 degrees) in the 20iPC homolog, while in 17iPC the side chains are normal to the bilayer plane. The gel L beta phases of 17iPC (Tgg = 17-19.5 degrees C) and 20iPC (Tgg = 44 degrees C) are similar but not identical and are consistent with a distorted, pseudohexagonal lattice for the rotationally disordered side chains. The liquid crystal phases of 17iPC (Tgl = 28 degrees C) and 20iPC (Tgl = 52 degrees C) are structurally similar and are typical of lipids with fluid side chains. Significant but different changes occur in the long spacings at Tgg and Tgl for the two homologs. This implies that interfacial states (particularly in the subgel phases) differ in the two homologs below the liquid crystal phase transition temperature.  相似文献   

16.
F S Hing  P R Maulik  G G Shipley 《Biochemistry》1991,30(37):9007-9015
The ether-linked phospholipid 1,2-dihexadecylphosphatidylethanolamine (DHPE) was studied as a function of hydration and in fully hydrated mixed phospholipid systems with its ester-linked analogue 1,2-dipalmitoylphosphatidylethanolamine (DPPE). A combination of differential scanning calorimetry (DSC) and X-ray diffraction was used to examine the phase behavior of these lipids. By DSC, from 0 to 10 wt % H2O, DHPE displayed a single reversible transition that decreased from 95.2 to 78.8 degrees C and which was shown by X-ray diffraction data to be a direct bilayer gel to inverted hexagonal conversion, L beta----HII. Above 15% H2O, two reversible transitions were observed which stabilized at 67.1 and 92.3 degrees C above 19% H2O. X-ray diffraction data of fully hydrated DHPE confirmed the lower temperature transition to be a bilayer gel to bilayer liquid-crystalline (L beta----L alpha) phase transition and the higher temperature transition to be a bilayer liquid-crystalline to inverted hexagonal (L alpha----HII) phase transition. The lamellar repeat distance of gel-state DHPE increased as a function of hydration to a limiting value of 62.5 A at 19% H2O (8.6 mol of water/mol of DHPE), which corresponds to the hydration at which the transition temperatures are seen to stabilize by DSC. Electron density profiles of DHPE, in addition to calculations of the lipid layer thickness, confirmed that DHPE in the gel state forms a noninterdigitated bilayer at all hydrations. Fully hydrated mixed phospholipid systems of DHPE and DPPE exhibited two reversible transitions by DSC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
While hydrated dipalmitoyl phosphatidylcholine (DPPC) forms tilted chain L beta' bilayers in the gel phase, the ether-linked analogue dihexadecyl phosphatidylcholine (DHPC) exhibits gel phase polymorphism. At low hydration DHPC forms L beta' phases but at greater than 30% H2O a chain-interdigitated gel phase is observed (Ruocco, M. J., D. S. Siminovitch, and R. G. Griffin. 1985. Biochemistry. 24:2406-2411; Kim, J.T., J. Mattai, and G.G. Shipley. 1987. Biochemistry. 26:6599-6603). In this study we report the behavior of a phosphatidylcholine (PC) with both types of chain linkage, 1-hexadecyl-2-palmitoyl-sn-glycero-3-phosphocholine (HPPC). HPPC has been investigated as a function of hydration using differential scanning calorimetry (DSC) and x-ray diffraction. By DSC, over the hydration range 5. 1-70.3 wt% H2O, HPPC exhibits two reversible transitions. The reversible main chain-melting transition decreases from 69 degrees C, reaching a limiting value of 40 degrees C at full hydration. X-ray diffraction patterns of hydrated HPPC have been recorded as a function of hydration at 20 degrees and 50 degrees C. At 50 degrees C, melted-chain L alpha bilayer phases are observed at all hydrations. At 20 degrees C, at low hydrations (less than 34 wt% H2O) HPPC exhibits diffraction patterns characteristic of bilayer gel phases similar to those of the gel phase of DPPC. In contrast, at greater than or equal to 34 wt% H2O, HPPC shows a much reduced bilayer periodicity, d = 47 A, and a single sharp reflection at 4.0 A in the wide angle region. This diffraction pattern is identical to that exhibited by the interdigitated phase of DHPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

19.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6592-6598
The structure and properties of the ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) have been examined as a function of hydration. By differential scanning calorimetry, DHPC exhibits an endothermic (chain melting) transition with the transition temperature (limiting value, 44.2 degrees C) and enthalpy (limiting value, delta H = 8.0 kcal/mol) being hydration dependent. For hydration values greater than 30 wt % water, DHPC exhibits a pretransition at approximately 36 degrees C (delta H = 1.1 kcal/mol) and a subtransition at approximately 5 degrees C (delta H = 0.2 kcal/mol). By X-ray diffraction, at 22 degrees C DHPC exhibits a normal bilayer gel structure with the bilayer periodicity increasing from 58.0 to 62.5 A over the hydration range 9.5-25.4% water. At 30-32% water, two coexisting gel phases are observed with d = 63-64 A and d = 44-45 A; at higher hydration, only the latter phase is present, reaching a limiting d = 47.0 A at 37.5% water. Two different gel phases clearly exist at low and high hydrations. Electron density profiles at low hydration (9.5-25.4%) show a bilayer thickness dp-p = 46 A, whereas at greater than 32% water the bilayer thickness is markedly reduced, dp-p = 30 A. These and other structural parameters indicate a hydration-dependent gel----gel structural transition between a normal bilayer (two chains per polar group) and the chain-interdigitated bilayer (four chains per polar group) arrangement described previously for DHPC [Ruocco, M. J., Siminovitch, D. J., & Griffin, R. G. (1985) Biochemistry 24, 2406-2411].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The bilayer phase transitions of four kinds of unsaturated phospholipids with different-sized polar head groups, dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidyl-N-methylethanolamine (DOMePE), dioleoylphosphatidyl-N,N-dimethylethanolamine (DOMe2PE) and dioleoylphosphatidylcholine (DOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light-transmittance. DSC thermogram and light-transmittance curve for each phospholipid vesicle solution exhibited only one phase transition under ambient pressure, respectively. The light-transmittance of DOPC solution at pressure higher than 234 MPa abruptly increased stepwise at two temperatures, which corresponds to the appearance of stable subgel and lamellar gel phases under high pressure in addition to the liquid crystal phase. The constructed temperature (T)-pressure (p) phase diagrams were compared among these phospholipids. The phase-transition temperatures of the phospholipids decreased stepwise by N-methylation of the head group. The slops of the T-p phase boundary (dT/dp) of DOPE, DOMePE and DOMe2PE bilayers (0.127-0.145 K MPa-1) were found to be close to that of the transition from the lamellar crystal (or subgel; Lc) phase to the liquid crystal (Lalpha) phase for DOPC bilayer (0.131 K MPa-1). On the other hand, the dT/dp value of the main transition from the lamellar gel (Lbeta) phase to the Lalpha phase for DOPC bilayer (0.233 K MPa-1) was significantly different from that of the Lc/Lalpha transition, hence both curves intersected with each other at 234 MPa. The thermodynamic quantities associated with the phase transition of DOPE, DOMePE and DOMe2PE bilayers had also similar values to those for the Lc/Lalpha transition of DOPC bilayer. Taking into account of the values of transition temperature, dT/dp and thermodynamic quantities compared with the corresponding results of saturated phospholipids, we identified the phase transitions observed in the DOPE, DOMePE and DOMe2PE bilayers as the transition from the Lc phase to the Lalpha phase although they have been regarded as the main transition in the previous studies. The Lbeta phase is probably unstable for DOPE, DOMePE and DOMe2PE bilayers at all pressures, it exists as a metastable phase at pressures below 234 MPa while as a stable phase at pressures above 234 MPa in DOPC bilayer. The difference in phase stability among the phospholipid bilayers is originated from that in hydration structure of the polar head groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号