首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Fructofuranosidases belonging to glycoside hydrolase family (GH) 32 are enzymes that hydrolyze sucrose. Some GH32 enzymes also catalyze transfructosylation to produce fructooligosaccharides. We found that Aspergillus kawachii IFO 4308 β-fructofuranosidase (AkFFase) produces fructooligosaccharides, mainly 1-kestose, from sucrose. We determined the crystal structure of AkFFase. AkFFase is composed of an N-terminal small component, a β-propeller catalytic domain, an α-helical linker, and a C-terminal β-sandwich, similar to other GH32 enzymes. AkFFase forms a dimer, and the dimerization pattern is different from those of other oligomeric GH32 enzymes. The complex structure of AkFFase with fructose unexpectedly showed that fructose binds both subsites ?1 and +1, despite the fact that the catalytic residues were not mutated. Fructose at subsite +1 interacts with Ile146 and Glu296 of AkFFase via direct hydrogen bonds.  相似文献   

2.
A huge number of glycoside hydrolases are classified into the glycoside hydrolase family (GH family) based on their amino-acid sequence similarity. The glycoside hydrolases acting on α-glucosidic linkage are in GH family 4, 13, 15, 31, 63, 97, and 122. This review deals mainly with findings on GH family 31 and 97 enzymes. Research on two GH family 31 enzymes is described: clarification of the substrate recognition of Escherichia coli α-xylosidase, and glycosynthase derived from Schizosaccharomyces pombe α-glucosidase. GH family 97 is an aberrant GH family, containing inverting and retaining glycoside hydrolases. The inverting enzyme in GH family 97 displays significant similarity to retaining α-glycosidases, including GH family 97 retaining α-glycosidase, but the inverting enzyme has no catalytic nucleophile residue. It appears that a catalytic nucleophile has been eliminated during the molecular evolution in the same way as a man-made nucleophile mutant enzyme, which catalyzes the inverting reaction, as in glycosynthase and chemical rescue.  相似文献   

3.
Exopolysaccharides (EPS) produced in situ by sourdough lactobacilli affect rheological properties of dough as well as bread quality and may serve as prebiotics. The aim of this study was to characterize EPS-formation by Lactobacillus sanfranciscensis TMW 1.392 at the molecular level. A levansucrase gene from L. sanfranciscensis TMW 1.392 encompassing 2,300 bp was sequenced. This levansucrase is predicted to be a cell-wall associated protein of 879 amino acids with a relative molecular weight (MR) of 90,000. The levansucrase gene was heterologously expressed in Escherichia coli and purified to homogeneity. The recombinant enzyme exhibited transferase and hydrolase activities and produced glucose, fructose, 1-kestose and levan from sucrose; truncation of the N-terminal domain did not affect catalytic activity. Kestose formation was enhanced relative to fructose and levan formation by low temperature or high sucrose levels. During growth in wheat doughs, strain TMW 1.392 utilized sucrose to form fructose, 1-kestose, and fructan, whereas a levansucrase deletion mutant, L. sanfranciscensis TMW 1392lev, lost the ability to hydrolyze sucrose, and did not produce fructan or 1-kestose. These results indicate that, in L. sanfranciscensis TMW 1.392, sucrose metabolism and formation of fructan and 1-kestose is dependent on the activity of a single enzyme, levansucrase.  相似文献   

4.
Bacterial levansucrase (EC 2.4.1.10) converts sucrose into non-linear levan consisting of long β(2,6)-linked fructosyl chains with β(2,1) branches. Bacterial levan has wide food and non-food applications, but its production in industrial reactors is costly and low yielding. Here, we report the constitutive expression of Gluconacetobacter diazotrophicus levansucrase (LsdA) fused to the vacuolar targeting pre-pro-peptide of onion sucrose:sucrose 1-fructosyltransferase (1-SST) in tobacco, a crop that does not naturally produce fructans. In the transgenic plants, levan with degree of polymerization above 104 fructosyl units was detected in leaves, stem, root, and flowers, but not in seeds. High levan accumulation in leaves led to gradual phenotypic alterations that increased with plant age through the flowering stage. In the transgenic lines, the fructan content in mature leaves varied from 10 to 70% of total dry weight. No oligofructans were stored in the plant organs, although the in vitro reaction of transgenic LsdA with sucrose yielded β(2,1)-linked FOS and levan. Transgenic lines with levan representing up to 30 mg g−1 of fresh leaf weight produced viable seeds and the polymer accumulation remained stable in the tested T1 and T2 progenies. The lsdA-expressing tobacco represents an alternative source of highly polymerized levan.  相似文献   

5.
Levan is a homopolymer of fructose which can be produced by the transfructosylation reaction of levansucrase (EC 2.4.1.10) from sucrose. In particular, levan synthesized by Zymomonas mobilis has found a wide and potential application in the food and pharmaceutical industry. In this study, the immobilization of Z. mobilis levansucrae (encoded by levU) was attempted for repeated production of levan. By fusion levU with the chitin-binding domain (ChBD), the hybrid protein was overproduced in a soluble form in Escherichia coli. After direct absorption of the protein mixture from E. coli onto chitin beads, levansucrase tagged with ChBD was found to specifically attach to the affinity matrix. Subsequent analysis indicated that the linkage between the enzyme and chitin beads was substantially stable. Furthermore, with 20% sucrose, the production of levan was enhanced by 60% to reach 83 g/l using the immobilized levansucrase as compared to that by the free counterpart. This production yield accounts for 41.5% conversion yield (g/g) on the basis of sucrose. After all, a total production of levan with 480 g/l was obtained by recycling of the immobilized enzyme for seven times. It is apparent that this approach offers a promising way for levan production by Z. mobilis levansucrase immobilized on chitin beads.  相似文献   

6.
Abstract

Adenylosuccinate synthetase from Saccharomyces cerevisiae was investigated in order to find a structural explanation for its ability to bind specifically to single-stranded ARS elements (autonomously replicating sequences). Using the E. coli enzyme as template, a model for the structure of adenylosuccinate synthetase from S. cerevisiae was generated and subsequently refined by molecular dynamics techniques.

The resulting three-dimensional structure offers an explanation for the DNA binding activity of the yeast enzyme by revealing a distinct basic region that is not present in the homologous enzymes from other organisms.

The model is also in good agreement with biochemical data available for a mutant protein in which Glycine 252 is replaced by Aspartate. On the basis of the model a significant structural distortion near the catalytic center was predicted for this mutant, corresponding well to the enzymatic inactivity observed. The mutant enzyme shows larger structural fluctuations than the wild-type protein according to the results of two independent molecular dynamics simulations.  相似文献   

7.
Summary Bacillus polymyxa (NRRL-18475) produced a levan-type fructan (B, 26 fructofuranoside) when grown on sucrose, sugarcane juice, and sugarbeet molasses. The organism converted about 46% of the fructose moiety of sucrose to levan when grown on sucrose medium, however, the yields of levan from sugarcane juice and beet molasses were much less than sucrose solution. Such sugarcane juice and beet molasses can be made a good substrate for levan production by various modifications. Adding peptone to sugarcane juice or passing beet molasses through a column of gel filtration media improved levan yield to a level almost comparable to that obtained from sucrose.  相似文献   

8.
Fructansucrases (FSs) catalyze a transfructosylation reaction with sucrose as substrate to produce fructo-oligosaccharides and fructan polymers that contain either β-2,1 glycosidic linkages (inulin) or β-2,6 linkages (levan). Levan-synthesizing FSs (levansucrases) have been most extensively investigated, while detailed information on inulosucrases is limited. Importantly, the molecular basis of the different product specificities of levansucrases and inulosucrases is poorly understood.We have elucidated the three-dimensional structure of a truncated active bacterial GH68 inulosucrase, InuJ of Lactobacillus johnsonii NCC533 (residues 145-708), in its apo form, with a bound substrate (sucrose), and with a transfructosylation product. The sucrose binding pocket and the sucrose binding mode are virtually identical with those of GH68 levansucrases, confirming that both enzyme types use the same fully conserved structural framework for the binding and cleavage of the donor substrate sucrose in the active site. The binding mode of the first transfructosylation product 1-kestose (Fru-β(2-1)-Fru-α(2-1)-Glc, where Fru = fructose and Glc = glucose) in subsites − 1 to + 2 shows for the first time how inulin-type fructo-oligosaccharide bind in GH68 FS and how an inulin-type linkage can be formed. Surprisingly, observed interactions with the sugar in subsites + 1 and + 2 are provided by residues that are also present in levansucrases. The binding mode of 1-kestose and the presence of a more distant sucrose binding site suggest that residues beyond the + 2 subsite, in particular residues from the nonconserved 1B-1C loop, determine product linkage type specificity in GH68 FSs.  相似文献   

9.
Wild-type, BaGH5-WT and mutant, BaGH5-UV2 (aspartate residue mutated to glycine), endoglucanases belonging to glycoside hydrolase family 5 (GH5), from wild-type, and UV2 mutant strain of Bacillus amyloliquefaciens SS35, respectively, were earlier cloned in pHTP0 cloning vector. In this study, genes encoding BaGH5-WT or BaGH5-UV2 were cloned into pET28a(+) expression-vector and expressed in Escherichia coli BL-21(DE3)pLysS cells. BaGH5-UV2 showed 10-fold (43.6 U/mg) higher specific activity against carboxymethylcellulose sodium salt (CMC-Na), higher optimal temperature by 10°C at 65°C, and 22-fold higher catalytic efficiency against CMC-Na, than BaGH5-WT. BaGH5-UV2 showed stability in wider acidic pH range (5.0–7.0) unlike BaGH5-WT in narrow basic pH range (7.0–7.5). BaGH5-UV2 displayed a mutation, Asp256Gly in L11 loop, connecting β6-sheet with α6-helix, near active site toward the domain surface of (α/β)8-TIM barrel fold. Molecular dynamics simulation studies showed more stable structure, accessibility of substrate for a catalytic site, and increased flexibility of loop L11 of BaGH5-UV2 than the wild type, suggesting enhanced catalysis by BaGH5-UV2. Molecular docking analysis displayed enhanced hydrogen bond interactions of cello-oligosaccharides with BaGH5-UV2, unlike BaGH5-WT. Thus, Gly256 residue of loop L11 plays an important role in enhancing catalytic efficiency, and pH stability of GH5 endoglucanase. Therefore, these results help in protein engineering of GH5 endoglucanase for improved biochemical properties.  相似文献   

10.
ABSTRACT

The genes encoding chitin-degrading enzymes in Aeromonas salmonicida SWSY-1.411 were identified and cloned in Escherichia coli. The strain contained two glycoside hydrolase (GH) families 18 chitinases: AsChiA and AsChiB, two GH19 chitinases: AsChiC and AsChiD, and an auxiliary activities family 10 protein, lytic polysaccharide monooxygenase: AsLPMO10A. These enzymes were successfully expressed in E. coli and purified. AsChiB had the highest hydrolytic activity against insoluble chitin. AsChiD had the highest activity against water-soluble chitin. The peroxygenase activity of AsLPMO10A was lower compared to SmLPMO10A from Serratia marcescens. Synergism on powdered chitin degradation was observed when AsChiA and AsLPMO10A were combined with other chitinases of this strain. More than twice the increase of the synergistic effect was observed when powdered chitin was treated by a combination of AsLPMO10A with all chitinases. GH19 chitinases suppressed the hyphal growth of Trichoderma reesei.  相似文献   

11.
The characteristics of levan formation by different preparations of levansucrase (free and immobilized enzyme and toluene-permeabilized whole cells), derived from recombinant levansucrase from Zymomonas mobilis expressed in Escherichia coli, were investigated. The maximal yield of levan by the three preparations were similar and were about 70–80% on a fructose-released basis with sucrose as nutrient at 100 g l–1. Immobilized enzyme and toluene-permeabilized whole cells produced low molecular weight levan (2–3 × 106), as determined by HPLC while high molecular weight levan (>6 × 106) was the major product with the free levansucrase. The size of levan can thus be controlled by immobilized levansucrase and toluene-permeabilized whole cells in high yield.  相似文献   

12.
Summary A genetically modified levansucrase, which contained His-affinity tag in its C-terminal, was constructed by PCR reaction using two synthetic primers. This modified protein was produced up to 30 % in total cell protein of E. coli, and was purified by a one-step affinity chromatography. The optimum pH for levan production was pH 5 and the optimum temperature was 0 °C. The higher velocity of levan formation within shorter enzyme reaction times was achieved by increasing the levels of enzyme concentration. The optimal sucrose concentration for levan production was around 20 %. Under these conditions, more than 50 g levan/l was produced.  相似文献   

13.
14.
Levan is β-2,6-linked polymeric fructose and serves as reserve carbohydrate in some plants and microorganisms. Mobilization of fructose is usually mediated by enzymes such as glycoside hydrolase (GH), typically releasing a monosaccharide as a product. The enzyme levan fructotransferase (LFTase) of the GH32 family catalyzes an intramolecular fructosyl transfer reaction and results in production of cyclic difructose dianhydride, thus exhibiting a novel substrate specificity. The mechanism by which LFTase carries out these functions via the structural fold conserved in the GH32 family is unknown. Here, we report the crystal structure of LFTase from Arthrobacter ureafaciens in apo form, as well as in complexes with sucrose and levanbiose, a difructosacchride with a β-2,6-glycosidic linkage. Despite the similarity of its two-domain structure to members of the GH32 family, LFTase contains an active site that accommodates a difructosaccharide using the -1 and -2 subsites. This feature is unique among GH32 proteins and is facilitated by small side chain residues in the loop region of a catalytic β-propeller N-domain, which is conserved in the LFTase family. An additional oligosaccharide-binding site was also characterized in the β-sandwich C-domain, supporting its role in carbohydrate recognition. Together with functional analysis, our data provide a molecular basis for the catalytic mechanism of LFTase and suggest functional variations from other GH32 family proteins, notwithstanding the conserved structural elements.  相似文献   

15.
【目的】筛选影响Ll.LtrB内含子编码蛋白(Intron encoded protein,IEP)反转录功能的关键催化位点,并获得无反转录活性的IEP突变体。【方法】首先,利用NCBI数据库,通过序列比对及同源建模方法筛选影响IEP反转录功能的关键氨基酸催化位点;然后,对筛选获得的关键催化位点进行定点突变,同时以Targetron载体为模板,构建无反转录功能的突变型Targetron打靶系统;最后,以大肠杆菌lacZ基因为例,体内验证IEP突变体的功能及其对Ⅱ型内含子"归巢"效率的影响。【结果】筛选到C164和G214两个位点是影响内含子编码蛋白反转录功能的关键氨基酸残基,并获得C164K和G214W两个突变体。体内功能分析表明,此两个位点突变完全失活了Ⅱ型内含子的"归巢"功能。【结论】筛选并获得了失活反转录功能的Ll.LtrB内含子编码蛋白突变体,为深入研究Ⅱ型内含子的结构和"归巢"机理奠定了基础。  相似文献   

16.
Several levan hyperproducing mutants of Zymomonas mobilis strains were selected by mutagenesis with N-methyl-N-nitro-nitrosoguanidine and caffeine. Highest levan production (41 g l–1) was obtained with a mutant strain HL 29 in a culture medium containing 200 g sucrose l–1 and 0.5 g (NH4)2SO4 l–1 stored at 7 °C for 29 days. This is the first report describing the levan synthesis by Z. mobilis at 7 °C.  相似文献   

17.
【背景】pBHR68是表达聚-3-羟基丁酸酯(Poly-3-Hydroxybutyrate,PHB)合成基因簇的高拷贝质粒,大肠杆菌K-12突变菌株S17-3在携带该质粒时生长密度高,耐低p H且在低pH条件下生长时高产可拉酸(Colanic Acid,CA)。【目的】系统探究与菌种(大肠杆菌S17-3)及质粒(pBHR68)相关的高密度生长现象的分子机理,提示PHB和CA合成代谢与高密度生长的偶联机制。【方法】解析质粒的构成、CA合成途径基因组成对高密度生长现象的影响;利用全基因组同比分析寻找可能的关键突变基因;开展转录组学分析,筛查大肠杆菌S17-3及其转化子在不同培养方式中的转录组数据,通过基因敲除实现基因功能及细胞生长状态的验证。【结果】大肠杆菌S17-3的高密度生长菌与PHB合成的操纵子的过表达以及rhsA的多位点突变相关,RcsA是CA合成与高密度生长中碳代谢流调控的关键调控蛋白。在低pH培养时,敲除可拉酸合成的关键糖基转移酶导致生物量提升;此外,大肠杆菌S17-3/pBHR68的高密度生长还可能与乳糖操纵子异常的转录调控相关,lacZ突变株高密度生长特性消失,而且无法合成可拉酸。【结论】研究分析了引起大肠杆菌S17-3高密度生长的多种因素,为大肠杆菌提高生长密度现象的进一步分析提供了重要线索,也为利用大肠杆菌S17-3的优异生理特性将其改造为寡糖合成的底盘细胞奠定了研究基础。  相似文献   

18.
Abstract

Enzymatic removal of blood group A and B antigens from the surface of red blood cells to develop universal blood was a pioneering vision originally proposed more than 25 years ago. A great variety of enzymes, potentially suitable for enzymatic conversion of red blood cells, has been described since, but the process has not been economically viable because of the poor kinetic properties and low pH optimum of enzymes. Recently, the identification of two new families of bacterial glycosidases with enhanced kinetic properties for the removal of A and B antigens at neutral pH marked a milestone in the field of transfusion medicine (). Here we present a detailed structural analysis of Elizabethkingia meningosepticum a-N-acetylgalactosaminidase (NagA) shown to efficiently cleave the A antigen. NagA, a member of glycoside hydrolase (GH) family 109, employs an unusual catalytic mechanism involving NAD+. Comparison of the active-center structure with that of members of GH family 4 reveals a striking degree of structural similarity that allows the postulation of a common reaction mechanism and illustrates a beautiful example of convergent evolution.  相似文献   

19.
The hydrolytic plant enzymes of family 32 of glycoside hydrolases (GH32), including acid cell wall type invertases (EC 3.2.1.26), fructan 1-exohydrolases (1-FEH; EC 3.2.1.153) and fructan 6-exohydrolases (6-FEH; EC 3.2.1.154), are very similar at the molecular and structural levels, but are clearly functionally different. The work presented here aims at understanding the evolution of enzyme specificity and functional diversity in this family by means of site-directed mutagenesis. It is demonstrated for the first time that invertase activity can be introduced in an S101L mutant of chicory (Cichorium intybus) 1-FEH IIa by influencing the orientation of Trp 82. At high sucrose and enzyme concentrations, a shift is proposed from a stable inhibitor configuration to an unstable substrate configuration. In the same way, invertase activity was introduced in Beta vulgaris 6-FEH by introducing an acidic amino acid in the vicinity of the acid-base catalyst (F233D mutant), creating a beta-fructofuranosidase type of enzyme with dual activity against sucrose and levan. As single amino acid substitutions can influence the donor substrate specificity of FEHs, it is predicted that plant invertases and FEHs may have diversified by introduction of a very limited number of mutations in the common ancestor.  相似文献   

20.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号