首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly variable regions called genomic islands are found in the genomes of marine picocyanobacteria, and have been predicted to be involved in niche adaptation and the ecological success of these microbes. These picocyanobacteria are typically highly sensitive to copper stress and thus, increased copper tolerance could confer a selective advantage under some conditions seen in the marine environment. Through targeted gene inactivation of genomic island genes that were known to be upregulated in response to copper stress in Synechococcus sp. strain CC9311, we found two genes (sync_1495 and sync_1217) conferred tolerance to both methyl viologen and copper stress in culture. The prevalence of one gene, sync_1495, was then investigated in natural samples, and had a predictable temporal variability in abundance at a coastal monitoring site with higher abundance in winter months. Together, this shows that genomic island genes can confer an adaptive advantage to specific stresses in marine Synechococcus, and may help structure their population diversity.  相似文献   

2.
《BBA》2020,1861(8):148215
Marine Synechococcus are widespread in part because they are efficient at harvesting available light using their complex antenna, or phycobilisome, composed of multiple phycobiliproteins and bilin chromophores. Over 40% of Synechococcus strains are predicted to perform a type of chromatic acclimation that alters the ratio of two chromophores, green-light–absorbing phycoerythrobilin and blue-light–absorbing phycourobilin, to optimize light capture by phycoerythrin in the phycobilisome. Lyases are enzymes which catalyze the addition of bilin chromophores to specific cysteine residues on phycobiliproteins and are involved in chromatic acclimation. CpeY, a candidate lyase in the model strain Synechococcus sp. RS9916, added phycoerythrobilin to cysteine 82 of only the α subunit of phycoerythrin I (CpeA) in the presence or absence of the chaperone-like protein CpeZ in a recombinant protein expression system. These studies demonstrated that recombinant CpeY attaches phycoerythrobilin to as much as 72% of CpeA, making it one of the most efficient phycoerythrin lyases characterized to date. Phycobilisomes from a cpeY mutant showed a near native bilin composition in all light conditions except for a slight replacement of phycoerythrobilin by phycourobilin at CpeA cysteine 82. This demonstrates that CpeY is not involved in any chromatic acclimation-driven chromophore changes and suggests that the chromophore attached at cysteine 82 of CpeA in the cpeY mutant is ligated by an alternative phycoerythrobilin lyase. Although loss of CpeY does not greatly inhibit native phycobilisome assembly in vivo, the highly active recombinant CpeY can be used to generate large amounts of fluorescent CpeA for biotechnological uses.  相似文献   

3.
Marine microbial communities often contain multiple closely related phylogenetic clades, but in many cases, it is still unclear what physiological traits differentiate these putative ecotypes. The numerically abundant marine cyanobacterium Synechococcus can be divided into at least 14 clades. In order to better understand ecotype differentiation in this genus, we assessed the diversity of a Synechococcus community from a well-mixed water column in the Sargasso Sea during March 2002, a time of year when this genus typically reaches its annual peak in abundance. Diversity was estimated from water sampled at three depths (approximately 5, 70, and 170 m) using both culture isolation and construction of cyanobacterial 16S-23S rRNA internal transcribed sequence clone libraries. Clonal isolates were obtained by enrichment with ammonium, nitrite, or nitrate as the sole N source, followed by pour plating. Each method sampled the in situ diversity differently. The combined methods revealed a total of seven Synechococcus phylotypes including two new putative ecotypes, labeled XV and XVI. Although most other isolates grow on nitrate, clade XV exhibited a reduced efficiency in nitrate utilization, and both clade XV and XVI are capable of chromatic adaptation, demonstrating that this trait is more widely distributed among Synechococcus strains than previously known. Thus, as in its sister genus Prochlorococcus, light and nitrogen utilization are important factors in ecotype differentiation in the marine Synechococcus lineage.  相似文献   

4.
Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.  相似文献   

5.
The influence of spectral quality on growth and pigmentation was compared among five strains of marine and freshwater picocyanobacteria grown under the same photon flux density (28 μE · m?2·s?1). Growth and phycoerythrin (PE) concentration per unit carbon increased when marine Synechococcus WH7803 was grown under green light as compared to red light, but no change in phycocyanin concentration occurred. Marine Synechococcus strain 48B66 also showed greater levels of PE when grown under green light than under red light, but no concomitant growth increase occurred. Both strains thus exhibited Group II chromatic adaptation. Additionally, strain 48B66 increased the relative level of phycourobilin compared to phycoerythrobilin when grown under red light. In contrast, both marine and freshwater Synechococcus strains containing no PE showed decreased growth under green light. Chlorophyll a concentrations were greatest or among the greatest in all strains grown under green light. These results suggest that light quality, through its effects on growth rate, may be an important factor controlling the distribution and abundance of the various pigment types of Synechococcus.  相似文献   

6.
Regulatory small RNAs (sRNAs) have crucial roles in the adaptive responses of bacteria to changes in the environment. Thus far, potential regulatory RNAs have been studied mainly in marine picocyanobacteria in genetically intractable Prochlorococcus, rendering their molecular analysis difficult. Synechococcus sp. WH7803 is a model cyanobacterium, representative of the picocyanobacteria from the mesotrophic areas of the ocean. Similar to the closely related Prochlorococcus it possesses a relatively streamlined genome and a small number of genes, but is genetically tractable. Here, a comparative genome analysis was performed for this and four additional marine Synechococcus to identify the suite of possible sRNAs and other RNA elements. Based on the prediction and on complementary microarray profiling, we have identified several known as well as 32 novel sRNAs. Some sRNAs overlap adjacent coding regions, for instance for the central photosynthetic gene psbA. Several of these novel sRNAs responded specifically to environmentally relevant stress conditions. Among them are six sRNAs changing their accumulation level under cold stress, six responding to high light and two to iron limitation. Target predictions suggested genes encoding components of the light-harvesting apparatus as targets of sRNAs originating from genomic islands and that one of the iron-regulated sRNAs might be a functional homolog of RyhB. These data suggest that marine Synechococcus mount adaptive responses to these different stresses involving regulatory sRNAs.  相似文献   

7.
Unicellular marine cyanobacteria are ubiquitous in both coastal and oligotrophic regimes. The contribution of these organisms to primary production and nutrient cycling is substantial on a global scale. Natural populations of marine Synechococcus strains include multiple genetic lineages, but the link, if any, between unique phenotypic traits and specific genetic groups is still not understood. We studied the genetic diversity (as determined by the DNA-dependent RNA polymerase rpoC1 gene sequence) of a set of marine Synechococcus isolates that are able to swim. Our results show that these isolates form a monophyletic group. This finding represents the first example of correspondence between a physiological trait and a phylogenetic group in marine Synechococcus. In contrast, the phycourobilin (PUB)/phycoerythrobilin (PEB) pigment ratios of members of the motile clade varied considerably. An isolate obtained from the California Current (strain CC9703) displayed a pigment signature identical to that of nonmotile strain WH7803, which is considered a model for low-PUB/PEB-ratio strains, whereas several motile strains had higher PUB/PEB ratios than strain WH8103, which is considered a model for high-PUB/PEB-ratio strains. These findings indicate that the PUB/PEB pigment ratio is not a useful characteristic for defining phylogenetic groups of marine Synechococcus strains.  相似文献   

8.
Chromatic Adaptation in Marine Synechococcus Strains   总被引:3,自引:0,他引:3       下载免费PDF全文
Characterization of two genetically distinct groups of marine Synechococcus sp. strains shows that one, but not the other, increases its phycourobilin/phycoerythrobilin chromophore ratio when growing in blue light. This ability of at least some marine Synechococcus strains to chromatically adapt may help explain their greater abundance in particular ocean environments than cyanobacteria of the genus Prochlorococcus.  相似文献   

9.
Marine viruses are an important component of the microbial food web, influencing microbial diversity and contributing to bacterial mortality rates. Resistance to cooccurring cyanophages has been reported for natural communities of Synechococcus spp.; however, little is known about the nature of this resistance. This study examined the patterns of infectivity among cyanophage isolates and unicellular marine cyanobacteria (Synechococcus spp.). We selected for phage-resistant Synechococcus mutants, examined the mechanisms of phage resistance, and determined the extent of cross-resistance to other phages. Four strains of Synechococcus spp. (WH7803, WH8018, WH8012, and WH8101) and 32 previously isolated cyanomyophages were used to select for phage resistance. Phage-resistant Synechococcus mutants were recovered from 50 of the 101 susceptible phage-host pairs, and 23 of these strains were further characterized. Adsorption kinetic assays indicate that resistance is likely due to changes in host receptor sites that limit viral attachment. Our results also suggest that receptor mutations conferring this resistance are diverse. Nevertheless, selection for resistance to one phage frequently resulted in cross-resistance to other phages. On average, phage-resistant Synechococcus strains became resistant to eight other cyanophages; however, there was no significant correlation between the genetic similarity of the phages (based on g20 sequences) and cross-resistance. Likewise, host Synechococcus DNA-dependent RNA polymerase (rpoC1) genotypes could not be used to predict sensitivities to phages. The potential for the rapid evolution of multiple phage resistance may influence the population dynamics and diversity of both Synechococcus and cyanophages in marine waters.  相似文献   

10.
Chromatic adaptation (CA) in cyanobacteria has provided a model system for the study of the environmental control of photophysiology for several decades. All forms of CA that have been examined so far (types II and III) involve changes in the relative contents of phycoerythrin (PE) and/or phycocyanin when cells are shifted from red to green light and vice versa. However, the chromophore compositions of these polypeptides are not altered. Some marine Synechococcus species strains, which possess two PE forms (PEI and PEII), carry out another type of CA (type IV), occurring during shifts from blue to green or white light. Two chromatically adapting strains of marine Synechococcus recently isolated from the Gulf of Mexico were utilized to elucidate the mechanism of type IV CA. During this process, no change in the relative contents of PEI and PEII was observed. Instead, the ratio of the two chromophores bound to PEII, phycourobilin and phycoerythrobilin, is high under blue light and low under white light. Mass spectroscopy analyses of isolated PEII alpha- and beta-subunits show that there is a single PEII protein type under all light climates. The CA process seems to specifically affect the chromophorylation of the PEII (and possibly PEI) alpha chain. We propose a likely process for type IV CA, which involves the enzymatic activity of one or several phycobilin lyases and/or lyase-isomerases differentially controlled by the ambient light quality. Phylogenetic analyses based on the 16S rRNA gene confirm that type IV CA is not limited to a single clade of marine Synechococcus.  相似文献   

11.

Background

The picocyanobacterial genus Synechococcus occurs over wide oceanic expanses, having colonized most available niches in the photic zone. Large scale distribution patterns of the different Synechococcus clades (based on 16S rRNA gene markers) suggest the occurrence of two major lifestyles ('opportunists'/'specialists'), corresponding to two distinct broad habitats ('coastal'/'open ocean'). Yet, the genetic basis of niche partitioning is still poorly understood in this ecologically important group.

Results

Here, we compare the genomes of 11 marine Synechococcus isolates, representing 10 distinct lineages. Phylogenies inferred from the core genome allowed us to refine the taxonomic relationships between clades by revealing a clear dichotomy within the main subcluster, reminiscent of the two aforementioned lifestyles. Genome size is strongly correlated with the cumulative lengths of hypervariable regions (or 'islands'). One of these, encompassing most genes encoding the light-harvesting phycobilisome rod complexes, is involved in adaptation to changes in light quality and has clearly been transferred between members of different Synechococcus lineages. Furthermore, we observed that two strains (RS9917 and WH5701) that have similar pigmentation and physiology have an unusually high number of genes in common, given their phylogenetic distance.

Conclusion

We propose that while members of a given marine Synechococcus lineage may have the same broad geographical distribution, local niche occupancy is facilitated by lateral gene transfers, a process in which genomic islands play a key role as a repository for transferred genes. Our work also highlights the need for developing picocyanobacterial systematics based on genome-derived parameters combined with ecological and physiological data.  相似文献   

12.
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea.  相似文献   

13.
The relatedness of several marine Synechococcus spp. was estimated by DNA hybridization. Strains isolated from various geographical locations and representing a diversity of DNA base compositions and phycobiliprotein profiles were compared by restriction fragment length polymorphisms for a number of genes. DNAs from two marine red algae and a cryptomonad alga (which exhibit a phycobiliprotein composition similar to that of the marine Synechococcus spp.) and Synechococcus strain PCC6301 (Anacystis nidulans) were also included in the comparison. Strains WH8008, WH8018, and WH7805 were shown to be very similar to one another, as were strains WH7802 and WH7803. Strains WH8110 and WH5701 were clearly unrelated to any of the other strains, and no marine Synechococcus isolate showed any similarity to the freshwater Synechococcus strain PCC6301 or the eucaryotic algae. The method is relatively straightforward and sensitive and uses a variety of basic molecular biology techniques. Its utility in ascertaining the genetic relatedness and diversity of marine Synechococcus spp. and possible extension to field studies are discussed.  相似文献   

14.
Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon the genomic complement of genes encoding superoxide dismutase (SOD). WH8102, with a gene encoding only an Ni-SOD, has a novel obligate requirement for Ni, regardless of the N source. Reduced SOD activity in Ni-depleted cultures of WH8102 supports the link of this strain's Ni requirement to Ni-SOD. The genome of CC9311 contains a gene for a Cu/Zn-SOD in addition to a predicted pair of Ni-SODs, yet this strain cannot grow without Ni on NO3 and can grow only slowly on NH4+ without Ni, implying that the Cu/Zn-SOD cannot completely replace Ni-SOD in marine cyanobacteria. CC9311 does have a greater tolerance for Ni starvation. Both strains increase their Ni uptake capabilities and actively bioconcentrate Ni in response to decreasing extracellular and intracellular Ni. The changes in Ni uptake rates were more pronounced in WH8102 than in CC9311 and for growth on urea or nitrate than for growth on ammonia. These results, combined with an analysis of fully sequenced marine cyanobacterial genomes, suggest that the growth of many marine Synechococcus and all Prochlorococcus strains is dependent upon Ni.  相似文献   

15.

Background

Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters.

Methods

All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration.

Conclusion/Significance

Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron-limited, high-nutrient low-chlorophyll region of the equatorial Pacific. This observation demonstrates the ecological importance of isiA genes in enabling marine Synechococcus to acclimate to iron limitation and suggests that the presence of this gene can be a natural biomarker for iron limitation in oceanic environments.  相似文献   

16.
Many cyanophage isolates which infect the marine cyanobacteria Synechococcus spp. and Prochlorococcus spp. contain a gene homologous to psbA, which codes for the D1 protein involved in photosynthesis. In the present study, cyanophage psbA gene fragments were readily amplified from freshwater and marine samples, confirming their widespread occurrence in aquatic communities. Phylogenetic analyses demonstrated that sequences from freshwaters have an evolutionary history that is distinct from that of their marine counterparts. Similarly, sequences from cyanophages infecting Prochlorococcus and Synechococcus spp. were readily discriminated, as were sequences from podoviruses and myoviruses. Viral psbA sequences from the same geographic origins clustered within different clades. For example, cyanophage psbA sequences from the Arctic Ocean fell within the Synechococcus as well as Prochlorococcus phage groups. Moreover, as psbA sequences are not confined to a single family of phages, they provide an additional genetic marker that can be used to explore the diversity and evolutionary history of cyanophages in aquatic environments.  相似文献   

17.
Seasonal variation in the phylogenetic composition of Synechococcus assemblages in estuarine and coastal waters of Hong Kong was examined through pyrosequencing of the rpoC1 gene. Sixteen samples were collected in 2009 from two stations representing estuarine and ocean-influenced coastal waters, respectively. Synechococcus abundance in coastal waters gradually increased from 3.6 × 103 cells ml−1 in March, reaching a peak value of 5.7 × 105 cells ml−1 in July, and then gradually decreased to 9.3 × 103 cells ml−1 in December. The changes in Synechococcus abundance in estuarine waters followed a pattern similar to that in coastal waters, whereas its composition shifted from being dominated by phycoerythrin-rich (PE-type) strains in winter to phycocyanin-only (PC-type) strains in summer owing to the increase in freshwater discharge from the Pearl River and higher water temperature. The high abundance of PC-type Synechococcus was composed of subcluster 5.2 marine Synechococcus, freshwater Synechococcus (F-PC), and Cyanobium. The Synechococcus assemblage in the coastal waters, on the other hand, was dominated by marine PE-type Synechococcus, with subcluster 5.1 clades II and VI as the major lineages from April to September, when the summer monsoon prevailed. Besides these two clades, clade III cooccurred with clade V at relatively high abundance in summer. During winter, the Synechococcus assemblage compositions at the two sites were similar and were dominated by subcluster 5.1 clades II and IX and an undescribed clade (represented by Synechococcus sp. strain miyav). Clade IX Synechococcus was a relatively ubiquitous PE-type Synechococcus found at both sites, and our study demonstrates that some strains of the clade have the ability to deal with large variation of salinity in subtropical estuarine environments. Our study suggests that changes in seawater temperature and salinity caused by the seasonal variation of monsoonal forcing are two major determinants of the community composition and abundance of Synechococcus assemblages in Hong Kong waters.  相似文献   

18.
The widespread unicellular cyanobacteria Synechococcus are major contributors to global marine primary production. Here, we report their abundance, phylogenetic diversity (as assessed using the RNA polymerase gamma subunit gene rpoC1) and pigment diversity (as indirectly assessed using the laterally transferred cpeBA genes, encoding phycoerythrin‐I) in surface waters of the northwestern Pacific Ocean, sampled over nine distinct cruises (2008–2015). Abundance of Synechococcus was low in the subarctic ocean and South China Sea, intermediate in the western subtropical Pacific Ocean, and the highest in the Japan and East China seas. Clades I and II were by far the most abundant Synechococcus lineages, the former dominating in temperate cold waters and the latter in (sub)tropical waters. Clades III and VI were also fairly abundant in warm waters, but with a narrower distribution than clade II. One type of chromatic acclimater (3dA) largely dominated the Synechococcus communities in the subarctic ocean, while another (3dB) and/or cells with a fixed high phycourobilin to phycoerythrobilin ratio (pigment type 3c) predominated at mid and low latitudes. Altogether, our results suggest that the variety of pigment content found in most Synechococcus clades considerably extends the niches that they can colonize and therefore the whole genus habitat.  相似文献   

19.
20.
Marine Synechococcus is a principal component of the picophytoplankton and makes an important contribution to primary productivity in the ocean. Synechophages, infecting Synechococcus, are believed to have significant influences on the distribution and abundance of their hosts. Extensive previous ecological studies on cyanobacteria and viruses have been carried out in the East China Sea (ECS). Here we investigate the diversity and divergence of Synechococcus and their myoviruses (Synechomyoviruses) based on their shared photosynthesis psbA gene. Synechococcus is dominated by subclades 5.1A I, 5.1A II and 5.1A IV in the ECS, and clades I and II are the dominant groups in the Synechomyoviruses. As two phylogenetically independent clades, there is much higher diversity of the Synechomyoviruses than Synechococcus. Obvious partitioning characteristics of GC and GC3 (the GC content at the third codon position) contents are obtained among different picophytoplankton populations and their phages. The GC3 content causes the psbA gene in Synechococcus to have a higher GC content, while the opposite is true in the Synechomyoviruses. Analyzing more than one-time difference of the codon usage frequency of psbA sequences, the third position nucleotides of preferred codons for Synechococcus are all G and C, while most Synechomyoviral sequences (72.7%) have A and T at the third position of their preferred codons. This work shed light on the ecology and evolution of phage-host interactions in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号