首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation hypothesis of atherosclerosis proposes that oxidized LDL is a major causative factor in the development of atherosclerosis. Although this hypothesis has received strong mechanistic support and many animal studies demonstrated profound atheroprotective effects of antioxidants, which reduce LDL oxidation, the results of human clinical trials with antioxidants were mainly negative, except in selected groups of patients with clearly increased systemic oxidative stress. We propose that even if reducing lipoprotein oxidation in humans might be difficult to achieve, deeper understanding of mechanisms by which oxidized LDL promotes atherosclerosis and targeting these specific mechanisms will offer novel approaches to treatment of cardiovascular disease. In this review article, we focus on oxidized cholesteryl esters (OxCE), which are a major component of minimally and extensively oxidized LDL and of human atherosclerotic lesions. OxCE and OxCE-protein covalent adducts induce profound biological effects. Among these effects, OxCE activate macrophages via toll-like receptor-4 (TLR4) and spleen tyrosine kinase and induce macropinocytosis resulting in lipid accumulation, generation of reactive oxygen species and secretion of inflammatory cytokines. Specific inhibition of OxCE-induced TLR4 activation, as well as blocking other inflammatory effects of OxCE, may offer novel treatments of atherosclerosis and cardiovascular disease. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.  相似文献   

2.
Minimally modified low density lipoprotein (mmLDL) is a pro-inflammatory and pro-atherogenic lipoprotein that, unlike profoundly oxidized LDL (OxLDL), is not recognized by scavenger receptors and thus does not have enhanced uptake by macrophages. However, here we demonstrate that mmLDL (as well as OxLDL) induces actin polymerization and spreading of macrophages, which results in such pro-atherogenic consequences as inhibition of phagocytosis of apoptotic cells but enhancement of OxLDL uptake. We also demonstrate for the first time that the lipopolysaccharide receptor, CD14, and toll-like receptor-4/MD-2 are involved in these mmLDL effects. Macrophages of the J774 cell line exhibited higher mmLDL binding and F-actin response than its CD14-deficient mutant, LR-9 cells. Similarly, Chinese hamster ovary cells transfected with human CD14 specifically bound mmLDL and responded with higher F-actin compared with control cells. Macrophages from C3H/HeJ mice, which have a point mutation in the Tlr4 gene, responded with lower F-actin to mmLDL and did not spread as well as macrophages from control animals. A significantly higher F-actin response was also observed in Chinese hamster ovary cells transfected with human toll-like receptor-4/MD-2 but not with TLR4 alone or TLR2. Thus, in addition to inhibition of phagocytosis, the recognition of mmLDL by macrophage lipopolysaccharide receptors results in convergence of cellular immune responses to products of microorganisms and to oxidation-specific self-antigens, which could both influence macrophage function and atherogenesis.  相似文献   

3.
Oxidation of low density lipoprotein (LDL) occurs in vivo and significantly contributes to the development of atherosclerosis. An important mechanism of LDL oxidation in vivo is its modification with 12/15-lipoxygenase (LO). We have developed a model of minimally oxidized LDL (mmLDL) in which native LDL is modified by cells expressing 12/15LO. This mmLDL activates macrophages inducing membrane ruffling and cell spreading, activation of ERK1/2 and Akt signaling, and secretion of proinflammatory cytokines. In this study, we found that many of the biological activities of mmLDL were associated with cholesteryl ester (CE) hydroperoxides and were diminished by ebselen, a reducing agent. Liquid chromatography coupled with mass spectroscopy demonstrated the presence of many mono- and polyoxygenated CE species in mmLDL but not in native LDL. Nonpolar lipid extracts of mmLDL activated macrophages, although to a lesser degree than intact mmLDL. The macrophage responses were also induced by LDL directly modified with immobilized 12/15LO, and the nonpolar lipids extracted from 12/15LO-modified LDL contained a similar set of oxidized CE. Cholesteryl arachidonate modified with 12/15LO also activated macrophages and contained a similar collection of oxidized CE molecules. Remarkably, many of these oxidized CE were found in the extracts of atherosclerotic lesions isolated from hyperlipidemic apoE(-/-) mice. These results suggest that CE hydroperoxides constitute a class of biologically active components of mmLDL that may be relevant to proinflammatory activation of macrophages in atherosclerotic lesions.  相似文献   

4.
5.
Lipopolysaccharide (LPS) activates innate immune responses through TLR4·MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4·MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IVA, a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IVA activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IVA activation. Computational studies suggested that unique ionic interactions exist between lipid IVA and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4′-phosphate on lipid IVA interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys367 and Arg434) at the dimerization interface. When replaced with their negatively charged human counterparts Glu369 and Gln436, mouse TLR4 was no longer responsive to lipid IVA. In contrast, human TLR4 gained lipid IVA responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IVA species specificity. Thus, using lipid IVA as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation.  相似文献   

6.
A cell surface receptor complex consisting of CD14, Toll-like receptor (TLR4), and MD-2 recognizes lipid A, the active moiety of lipopolysaccharide (LPS). Escherichia coli-type lipid A, a typical lipid A molecule, potently activates both human and mouse macrophage cells, whereas the lipid A precursor, lipid IVa, activates mouse macrophages but is inactive and acts as an LPS antagonist in human macrophages. This animal species-specific activity of lipid IVa involves the species differences in MD-2 structure. We explored the structural region of MD-2 that determines the agonistic and antagonistic activities of lipid IVa to induce nuclear factor-kappaB activation. By expressing human/mouse chimeric MD-2 together with mouse CD14 and TLR4 in human embryonic kidney 293 cells, we found that amino acid regions 57-79 and 108-135 of MD-2 determine the species-specific activity of lipid IVa. We also showed that the replacement of Thr(57), Val(61), and Glu(122) of mouse MD-2 with corresponding human MD-2 sequence or alanines impaired the agonistic activity of lipid IVa, and antagonistic activity became evident. These mutations did not affect the activation of nuclear factor-kappaB, TLR4 oligomerization, and inducible phosphorylation of IkappaBalpha in response to E. coli-type lipid A. These results indicate that amino acid residues 57, 61, and 122 of mouse MD-2 are critical to determine the agonist-antagonist activity of lipid IVa and suggest that these amino acid residues may be involved in the discrimination of lipid A structure.  相似文献   

7.
Formation of filamentous F-actin drives many cellular processes, including phagocytosis and cell spreading. We have recently reported that mouse macrophage 12/15-lipoxygenase (12/15-LO) activity promotes F-actin formation in filopodia during phagocytosis of apoptotic cells. Oxidized low-density lipoprotein (OxLDL) also stimulates robust F-actin formation and spreading of macrophages. However, unlike apoptotic cells, OxLDL did not cause specific translocation of 12/15-LO to the cell membrane, neither in macrophages nor in GFP-15LO-transfected COS-7 cells. Moreover, inhibition of 12/15-LO activity in macrophages by a specific inhibitor or by 12/15-LO gene disruption did not affect OxLDL-induced actin polymerization. Among LDL modifications modeling OxLDL, LDL modified by incubation with 15LO-overexpressing fibroblasts was as active in eliciting F-actin response as was OxLDL. This LDL modification is well known to produce minimally modified LDL (mmLDL), which is bioactive and carries lipid oxidation products similar to those produced by 12/15-LO catalysis. MmLDL activated phosphoinositide 3-kinase (PI3K), and PI3K inhibitors abolished mmLDL-induced macrophage spreading. We hypothesize that OxLDL and mmLDL may contribute oxidized lipids to the macrophage cell membrane and thereby mimic intracellular 12/15-LO activity, which leads to uncontrolled actin polymerization and dramatic cytoskeletal changes in macrophages.  相似文献   

8.
Yang K  He YS  Wang XQ  Lu L  Chen QJ  Liu J  Sun Z  Shen WF 《FEBS letters》2011,585(6):854-860
Atherosclerosis is an inflammatory process due to oxidized low-density lipoprotein (oxLDL) accumulation in macrophages. We investigated the involvement of microRNAs in oxLDL accumulation and inflammatory response in macrophages. The expression of miR-146a decreases under oxLDL stimulation. MiR-146a significantly reduces intracellular LDL cholesterol content and secretion of interleukin 6, interleukin 8, chemokine (C-C motif) ligand 2 and matrix metallopeptidase 9. Toll-like receptor 4 (TLR4) is a relevant target of miR-146a, and miR-146a inhibits the activation of TLR4-dependent intracellular signaling pathways involved in cytoskeleton rearrangement, lipid uptake, and inflammatory cytokine secretion. These results indicate that miR-146a contributes to the regulation of both oxLDL accumulation and inflammatory response by negatively regulating TLR4 and thereby inhibiting the activation of TLR4-dependent signaling pathways. Over-expression of miR-146a may be useful in the prevention and treatment of atherosclerosis.  相似文献   

9.
Lipid A (a hexaacylated 1,4' bisphosphate) is a potent immune stimulant for TLR4/MD-2. Upon lipid A ligation, the TLR4/MD-2 complex dimerizes and initiates signal transduction. Historically, studies also suggested the existence of TLR4/MD-2-independent LPS signaling. In this article, we define the role of TLR4 and MD-2 in LPS signaling by using genome-wide expression profiling in TLR4- and MD-2-deficient macrophages after stimulation with peptidoglycan-free LPS and synthetic Escherichia coli lipid A. Of the 1396 genes significantly induced or repressed by any one of the treatments in the wild-type macrophages, none was present in the TLR4- or MD-2-deficient macrophages, confirming that the TLR4/MD-2 complex is the only receptor for endotoxin and that both are required for responses to LPS. Using a molecular genetics approach, we investigated the mechanism of TLR4/MD-2 activation by combining the known crystal structure of TLR4/MD-2 with computer modeling. According to our murine TLR4/MD-2-activation model, the two phosphates on lipid A were predicted to interact extensively with the two positively charged patches on mouse TLR4. When either positive patch was abolished by mutagenesis into Ala, the responses to LPS and lipid A were nearly abrogated. However, the MyD88-dependent and -independent pathways were impaired to the same extent, indicating that the adjuvant activity of monophosphorylated lipid A most likely arises from its decreased potential to induce an active receptor complex and not more downstream signaling events. Hence, we concluded that ionic interactions between lipid A and TLR4 are essential for optimal LPS receptor activation.  相似文献   

10.
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity.  相似文献   

11.
Hypercholesterolemia induces increased transcytosis and accumulation of plasma lipoproteins in the arterial intima, where they interact with matrix proteins and become modified and reassembled lipoproteins. Chondroitin 6-sulfate-modified LDL (CS-mLDL) induces migration, proliferation, and lipid accumulation in human aortic smooth muscle cells (SMCs). To search for the mechanism(s) responsible for lipid accumulation, cultured SMC and macrophages were exposed to CS-mLDL, minimally modified LDL (mmLDL), and native LDL (as a control). Then the cellular uptake, degradation and expression of the LDL receptor (LDL-R) was determined using radioiodinated ligands, ACAT activity assay, fluorescence microscopy and RT-PCR. The uptake of CS-mLDL was 2-fold higher in SMC and 3-to 4-fold higher in macrophages as compared to LDL and mmLDL; the lysosomal degradation of CS-mLDL was slower in SMCs and considerably diminished in macrophages. Compared with LDL, CS-mLDL induced increased synthesis and accumulation of esterified cholesterol in SMCs (∼2-fold) and macrophages (∼10-fold) within an expanded acidic compartment. CS-mLDL and mmLDL down-regulate the gene expression of the LDL-R in the both cell types. Mechanisms of CS-mLDL-induced lipid accumulation in SMC and macrophages involve increased cellular uptake, and diminished cellular degradation that stimulates cholesterol ester synthesis and accumulation in cytoplasmic inclusions and in the lysosomal compartment in an undegraded form; modified lipoproteins induce down-regulation of LDL-R.  相似文献   

12.
A novel hypercholesterolemic zebrafish model has been developed to study early events of atherogenesis. This model utilizes optically transparent zebrafish larvae, fed a high cholesterol diet (HCD), to monitor processes of vascular inflammation in live animals. Because lipoprotein oxidation is an important factor in the development of atherosclerosis, in this study, we characterized the oxidized lipid milieu in HCD-fed zebrafish larvae. Using liquid chromatography-mass spectrometry, we show that feeding an HCD for only 2 weeks resulted in up to 70-fold increases in specific oxidized cholesteryl esters, identical to those present in human minimally oxidized LDL and in murine atherosclerotic lesions. The levels of oxidized phospholipids, such as 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine, and of various lysophosphatidylcholines were also significantly elevated. Moreover, lipoproteins isolated from homogenates of HCD-fed larvae induced cell spreading as well as ERK1/2, Akt, and JNK phosphorylation in murine macrophages. Removal of apoB-containing lipoproteins from the zebrafish homogenates with an anti-human LDL antibody, as well as reducing lipid hydroperoxides with ebselen, resulted in inhibition of macrophage activation. The TLR4 deficiency in murine macrophages prevented their activation with zebrafish lipoproteins. Using biotinylated homogenates of HCD-fed larvae, we demonstrated that their components bound to murine macrophages, and this binding was effectively competed by minimally oxidized LDL but not by native LDL. These data provide evidence that molecular lipid determinants of proatherogenic macrophage phenotypes are present in large quantities in hypercholesterolemic zebrafish larvae and support the use of the HCD-fed zebrafish as a valuable model to study early events of atherogenesis.  相似文献   

13.
Interaction of oxidized low-density lipoprotein (LDL) with arterial smooth muscle cells (SMC) is believed to play a key role in the development of atherosclerosis. Depending on the extent of oxidation, apolipoproteins and/or lipids in the particle may be modified and thus lead to different cellular responses (e.g. proliferation or cell death). Here we report on the signaling effects of LDL, in which only the lipids were oxidized. This so-called minimally modified LDL (mmLDL) mainly activated components involved in stress response and apoptotic cell death including p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase/stress-activated protein kinase (JNK) as well as neutral and acid sphingomyelinase. In contrast, proliferative signaling elements such as extracellular regulated kinase, AKT-kinase and phospho-BAD seem to play a minor role as they were only slightly stimulated by mmLDL. Ceramide, the hydrolysis product of sphingomyelin, seems to be a key mediator as it mimics mmLDL by inducing activation of the same signaling components. Moreover, mmLDL- and ceramide-associated effects on apoptotic protein kinases were abolished by NB6, a specific inhibitor of acid sphingomyelinase. Thus, acid sphingomyelinase is very likely to be primarily responsible for triggering intracellular signal transduction in SMC after exposure to mmLDL via formation of ceramide by an autocatalytic mechanism.  相似文献   

14.
During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries.  相似文献   

15.
Recently, we have shown that macrophage uptake of low density lipoprotein (LDL) and cholesterol accumulation can occur by nonreceptor mediated fluid-phase macropinocytosis when macrophages are differentiated from human monocytes in human serum and the macrophages are activated by stimulation of protein kinase C (Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., Combs, C. A., Malide, D., and Zhang, W. Y. (2005) J. Biol. Chem. 280, 2352-2360). Differentiation of human monocytes in human serum produces a distinct macrophage phenotype. In this study, we examined the effect on LDL uptake of an alternative macrophage differentiation phenotype. Differentiation of macrophages from human monocytes in fetal bovine serum with macrophage-colony-stimulating factor (M-CSF) produced a macrophage phenotype demonstrating constitutive fluid-phase uptake of native LDL leading to macrophage cholesterol accumulation. Fluid-phase endocytosis of LDL by M-CSF human macrophages showed non-saturable uptake of LDL that did not down-regulate over 48 h. LDL uptake was mediated by continuous actin-dependent macropinocytosis of LDL by these M-CSF-differentiated macrophages. M-CSF is a cytokine present within atherosclerotic lesions. Thus, macropinocytosis of LDL by macrophages differentiated from monocytes under the influence of M-CSF is a plausible mechanism to account for macrophage foam cell formation in atherosclerotic lesions. This mechanism of macrophage foam cell formation does not depend on LDL modification or macrophage receptors.  相似文献   

16.
Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other proapoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and Toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36?(/)? or Tlr2?(/)? mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr?(/)? mice transplanted with Tlr4?(/)?Tlr2?(/)? bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT →Ldlr?(/)? lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis.  相似文献   

17.
Previously, we reported that fluid-phase endocytosis of native LDL by PMA-activated human monocytederived macrophages converted these macrophages into cholesterol-enriched foam cells (Kruth, H. S., Huang, W., Ishii, I., and Zhang, W. Y. (2002) J. Biol. Chem. 277, 34573-34580). Uptake of fluid by cells can occur either by micropinocytosis within vesicles (<0.1 microm diameter) or by macropinocytosis within vacuoles ( approximately 0.5-5.0 microm) named macropinosomes. The current investigation has identified macropinocytosis as the pathway for fluid-phase LDL endocytosis and determined signaling and cytoskeletal components involved in this LDL endocytosis. The phosphatidylinositol 3-kinase inhibitor, LY294002, which inhibits macropinocytosis but does not inhibit micropinocytosis, completely blocked PMA-activated macrophage uptake of fluid and LDL. Also, nystatin and filipin, inhibitors of micropinocytosis from lipid-raft plasma membrane domains, both failed to inhibit PMA-stimulated macrophage cholesterol accumulation. Time-lapse video phase-contrast microscopy and time-lapse digital confocal-fluorescence microscopy with fluorescent DiI-LDL showed that PMA-activated macrophages took up LDL in the fluid phase by macropinocytosis. Macropinocytosis of LDL depended on Rho GTPase signaling, actin, and microtubules. Bafilomycin A1, the vacuolar H+-ATPase inhibitor, inhibited degradation of LDL and caused accumulation of undegraded LDL within macropinosomes and multivesicular body endosomes. LDL in multivesicular body endosomes was concentrated >40-fold over its concentration in the culture medium consistent with macropinosome shrinkage by maturation into multivesicular body endosomes. Macropinocytosis of LDL taken up in the fluid phase without receptor-mediated binding of LDL is a novel endocytic pathway that generates macrophage foam cells. Macropinocytosis in macrophages and possibly other vascular cells is a new pathway to target for modulating foam cell formation in atherosclerosis.  相似文献   

18.
In the present report we have examined expression of the gene encoding the inflammatory monokine TNF-alpha in murine peritoneal macrophages treated with different forms of low density lipoprotein (LDL). LDL modified by oxidation in vitro is unable to stimulate inflammatory gene expression in peritoneal macrophages. However, treatment of macrophage cultures with oxidized LDL for 6 h or more resulted in a concentration and time-dependent suppression of TNF-alpha mRNA expression induced in response to stimulation with either LPS or maleylated BSA. This suppression was maximal after 12 h of exposure to oxidized LDL and at a concentration of 100 to 200 micrograms LDL cholesterol/ml of culture medium. The suppressive effect was restricted to oxidatively modified LDL as treatment with native LDL or acetylated LDL did not affect TNF-alpha mRNA expression, despite the fact that both acetylated and oxidized LDL lead to intracellular lipid accumulation. The expression of maleyl albumin-stimulated TNF-alpha mRNA expression could be reproduced by lipid extracts of oxidized LDL provided to macrophages at the same cholesterol concentration as from the intact lipoprotein particle. Extracts from native LDL were ineffective. These results suggest that oxidized lipid accumulation in monocytes infiltrating the arterial wall may lead to the suppression of certain inflammatory functions which, in turn, may influence the development of mature atherosclerotic lesions.  相似文献   

19.
20.
We previously showed that viable Mycobacterium tuberculosis (Mtb) bacilli contain distinct ligands that activate cells via the mammalian Toll-like receptor (TLR) proteins TLR2 and TLR4. We now demonstrate that expression of a dominant negative TLR2 or TLR4 proteins in RAW 264.7 macrophages partially blocked Mtb-induced NF-kappa B activation. Coexpression of both dominant negative proteins blocked virtually all Mtb-induced NF-kappa B activation. The role of the TLR4 coreceptor MD-2 was also examined. Unlike LPS, Mtb-induced macrophage activation was not augmented by overexpression of ectopic MD-2. Moreover, cells expressing an LPS-unresponsive MD-2 mutant responded normally to Mtb. We also observed that the lipid A-like antagonist E5531 specifically inhibited TLR4-dependent Mtb-induced cellular responses. E5531 could substantially block LPS- and Mtb-induced TNF-alpha production in both RAW 264.7 cells and primary human alveolar macrophages (AM phi). E5531 inhibited Mtb-induced AM phi apoptosis in vitro, an effect that was a consequence of the inhibition of TNF-alpha production by E5531. In contrast, E5531 did not inhibit Mtb-induced NO production in RAW 264.7 cells and AM phi. Mtb-stimulated peritoneal macrophages from TLR2- and TLR4-deficient animals produced similar amounts of NO compared with control animals, demonstrating that these TLR proteins are not required for Mtb-induced NO production. Lastly, we demonstrated that a dominant negative MyD88 mutant could block Mtb-induced activation of the TNF-alpha promoter, but not the inducible NO synthase promoter, in murine macrophages. Together, these data suggest that Mtb-induced TNF-alpha production is largely dependent on TLR signaling. In contrast, Mtb-induced NO production may be either TLR independent or mediated by TLR proteins in a MyD88-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号