首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(6):842-850
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.  相似文献   

2.
Blair SS 《Current biology : CB》2000,10(16):R608-R612
Fringe modifies the ligand-selectivity of Notch in ways that are crucial for a number of Notch's developmental functions. Recent results have confirmed the suspicion that Fringe is a glycosyltransferase that works in the Golgi complex by modifying Notch's glycosylation state.  相似文献   

3.
Notch signaling in cancer   总被引:3,自引:0,他引:3  
The evolutionarily conserved developmental pathway driven by Notch receptors and ligands has acquired multiple post-natal homeostatic functions in vertebrates. Potential roles in human physiology and pathology are being studied by an increasingly large number of investigators. While the canonical Notch signaling pathway is deceptively simple, the consequences of Notch activation on cell fate are complex and context-dependent. The manner in which other signaling pathways cross-talk with Notch signaling appears to be extraordinarily complex. Recent observations have demonstrated the importance of endocytosis, multiple ubiquitin ligases, non-visual beta-arrestins and hypoxia in modulating Notch signaling. Structural biology is shedding light on the molecular mechanisms whereby Notch interacts with its nuclear partners. Genomics is slowly unraveling the puzzle of Notch target genes in several systems. At the same time, interest in modulating Notch signaling for medical purposes has dramatically increased. Over the last few years we have learned much about Notch signaling in cancer, immune disorders, neurological disorders and most recently, stroke. The role of Notch signaling in normal and transformed stem cells is under intense investigation. Some Notch-modulating drugs are already in clinical trials, and others at various stages of development. This review will focus on the most recent findings on Notch signaling in cancer and discuss their potential clinical implications.  相似文献   

4.
Due to its economic importance, ease of genetic manipulation, cultivation and processing, the tomato plant has been a target for increasing and diversifying content of fruit phytonutrients by transgenic and non-transgenic approaches. The tomato high pigment (hp) mutations exemplify the latter alternative and due to their positive effect on fruit lycopene content, they were introgressed into elite tomato germplasm for cost effective extraction of this important carotenoid. Interestingly, hp mutant fruits are also characterized by higher fruit levels of other functional metabolites, phenotypes caused by mutations in central genes regulating light signal-transduction. This gene identification suggests that modulation of light signaling machinery in plants may be highly effective towards manipulation of fruit phytonutrients but has never been thoroughly reviewed. This review therefore summarizes the progress which has been made on this valuable approach, emphasizing the consequences of transgenic modulation of light signaling components on the functional properties of the tomato fruit.  相似文献   

5.
Originally discovered nearly a century ago, the Notch signaling pathway is critical for virtually all developmental programs and modulates an astounding variety of pathogenic processes. The DSL (Delta, Serrate, LAG-2 family) proteins have long been considered canonical activators of the core Notch pathway. More recently, a wide and expanding network of non-canonical extracellular factors has also been shown to modulate Notch signaling, conferring newly appreciated complexity to this evolutionarily conserved signal transduction system. Here, I review current concepts in Notch signaling, with a focus on work from the last decade elucidating novel extracellular proteins that up- or down-regulate signal potency.  相似文献   

6.
Recent deep sequencing of cancer genomes has produced an explosion of new data implicating Notch signaling in several human cancers. Unlike most other pathways, these data indicate that Notch signaling can be either oncogenic or tumor suppressive, depending on the cellular context. In some instances, these relationships were predicted from mouse models or presaged by developmental roles for Notch, but in other cases were unanticipated. This review discusses the pathogenic and translational significance of these new findings.  相似文献   

7.
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.  相似文献   

8.
Wilson A  Radtke F 《FEBS letters》2006,580(12):2860-2868
In recent years a substantial body of evidence has accumulated to support the notion that signaling pathways known to be important during embryonic development play important roles in regulating self-renewing tissues. Moreover, the same pathways are often deregulated during tumorigenesis due to mutations of key elements of these pathways. The Notch signaling cascade meets all of the above-mentioned criteria. We discuss here the pleiotropic roles of the Notch signaling pathway in three different self-renewing organs (intestine, hematopoietic system and skin) and how its deregulation is involved in tumorigenesis.  相似文献   

9.
TM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer’s disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive. We knocked-out all three TM2D genes (almondex, CG11103/amaretto, CG10795/biscotti) in Drosophila and found that they share the same maternal-effect neurogenic defect. Triple null animals are not phenotypically worse than single nulls, suggesting these genes function together. Overexpression of the most conserved region of the TM2D proteins acts as a potent inhibitor of Notch signaling at the γ-secretase cleavage step. Lastly, Almondex is detected in the brain and its loss causes shortened lifespan accompanied by progressive motor and electrophysiological defects. The functional links between all three TM2D genes are likely to be evolutionarily conserved, suggesting that this entire gene family may be involved in AD.  相似文献   

10.
Breast cancer angiogenesis is elicited and regulated by a number of factors including the Notch signaling. Notch receptors and ligands are expressed in breast cancer cells as well as in the stromal compartment and have been implicated in carcinogenesis. Signals exchanged between neighboring cells through the Notch pathway can amplify and consolidate molecular differences, which eventually dictate cell fates. Notch signaling and its crosstalk with many signaling pathways play an important role in breast cancer cell growth, migration, invasion, metastasis and angiogenesis, as well as cancer stem cell (CSC) self-renewal. Therefore, significant attention has been paid in recent years toward the development of clinically useful antagonists of Notch signaling. Better understanding of the structure, function and regulation of Notch intracellular signaling pathways, as well as its complex crosstalk with other oncogenic signals in breast cancer cells will be essential to ensure rational design and application of new combinatory therapeutic strategies. Novel opportunities have emerged from the discovery of Notch crosstalk with inflammatory and angiogenic cytokines and their links to CSCs. Combinatory treatments with drugs designed to prevent Notch oncogenic signal crosstalk may be advantageous over λ secretase inhibitors (GSIs) alone. In this review, we focus on the more recent advancements in our knowledge of aberrant Notch signaling contributing to breast cancer angiogenesis, as well as its crosstalk with other factors contributing to angiogenesis and CSCs.  相似文献   

11.
12.
Pregnancy-associated exosomes and their modulation of T cell signaling   总被引:8,自引:0,他引:8  
Exosome release by viable cells is a feature of activated cell types, including tumors, fetal cells, and cells of the immune system. Exosomes critically regulate immune activation, by mediating activation-induced cell death. Fetal cells may mimic these events to selectively delete reactive lymphocytes. In this study the presence and composition of placenta-derived exosomes are demonstrated in the maternal circulation along with their consequences on T cell activation markers. For all pregnant patients, exosomes were isolated from sera obtained between 28 and 30 wk gestation. For pregnant women, subsequently delivering at term, circulating levels of placental exosomes were 1.8 times greater than those delivering preterm (p < 0.0001). Exosomes isolated from pregnancies subsequently delivering at term expressed significantly higher levels of biologically active components, including Fas ligand (FasL) and HLA-DR, than those from pregnancies delivering preterm. Standardizing for protein concentrations, exosomes from term-delivering pregnancies exhibited greater suppression of CD3-zeta and JAK3 than those delivering preterm. The suppression of CD3-zeta and JAK3 correlated with exosome expression levels of FasL (r2= 0.92 and r2= 0.938, respectively). Fractionation of exosomes from term-delivering pregnancies by continuously eluting electrophoresis indicated that intact 42 kD FasL and an unidentified 24-kDa protein were associated with CD3-zeta suppression. Our results demonstrated that exosomes from pregnancies ultimately delivering at term are present at significantly greater concentrations than those from pregnancies delivering preterm; however, exosomes from term-delivering pregnancies also exhibit significantly greater suppression of CD3-zeta and JAK3.  相似文献   

13.
14.
Notch信号通路研究进展   总被引:4,自引:0,他引:4  
Lu ZZ  Wang LS  Wu CT 《生理科学进展》2004,35(2):135-138
在无脊椎动物和脊椎动物发育过程中 ,Notch信号对细胞的命运决定起关键作用。通过Notch受体的信号传递能够扩大并固化相邻细胞之间的分子差异 ,最终决定细胞的命运。本文综述了Notch信号通路的相关细节 ,重点讨论了CSL非依赖的途径  相似文献   

15.
Multiple mechanisms are involved in positioning and restricting specialized dorsal-ventral border cells in the Drosophila wing, including modulation of Notch signaling by Fringe, autonomous inhibition by Notch ligands, and inhibition of Notch target genes by Nubbin. Recent studies have revealed that Fringe also modulates a Notch-mediated signaling process between dorsal and ventral cells in the Drosophila eye, establishing an organizer of eye growth and patterning along the dorsal-ventral midline. Fringe-dependent modulation of Notch signaling also plays a key role in Drosophila leg segmentation and growth. Lunatic Fringe has been shown to be required for vertebrate somitogenesis, where it appears to act as a crucial link between a molecular clock and the regulation of Notch signaling.  相似文献   

16.
In the last 40 years ovarian cancer mortality rates have slightly declined and, consequently, it continues to be the fifth cause of cancer death in women. In the present study, we showed that β-catenin signaling is involved in the functions of ovarian cancer cells and interacts with the Notch system. Wnt and Notch systems showed to be prosurvival for ovarian cancer cells and their inhibition impaired cell proliferation and migration. We also demonstrated that the inhibition of β-catenin by means of two molecules, XAV939 and ICG-001, decreased the proliferation of the IGROV1 and SKOV3 ovarian cancer cell lines and that ICG-001 increased the percentage of IGROV1 cells undergoing apoptosis. The simultaneous inhibition of β-catenin and Notch signaling, by using the DAPT inhibitor, decreased ovarian cancer cell proliferation to the same extent as targeting only the Wnt/β-catenin pathway. A similar effect was observed in IGROV1 cell migration with ICG-001 and DAPT. ICG-001 increased the Notch target genes Hes-1 and Hey-1 and increased Jagged1 expression. However, no changes were observed in Dll4 or Notch 1 and 4 expressions. Our results suggest that Notch and β-catenin signaling co-operate in ovarian cancer to ensure the proliferation and migration of cells and that this could be achieved, at least partly, by the upregulation of Notch Jagged1 ligand in the absence of Wnt signaling. We showed that the Wnt pathway crosstalks with Notch in ovarian cancer cell functions, which may have implications in ovarian cancer therapeutics.  相似文献   

17.
18.
19.
We examined the expression patterns of the two homologous genes, spinal cord-derived growth factor (SCDGF)/platelet-derived growth factor (PDGF)-C/fallotein and SCDGF-B/PDGF-D in the rat central nervous system. In the spinal cord, SCDGF/PDGF-C/fallotein was expressed in the floor plate at embryonic day (E) 11 and also in the ventricular zone at E16 but not in adult. However, SCDGF-B/PDGF-D was prominently expressed in the adult motoneurons, although faint expression was observed in the ventral ventricular zone at E16. Also in the brain, the expression of SCDGF/PDGF-C/fallotein was more remarkable at E16 than at adult. It was highly expressed in the cortex, pontine area and choroid plexus at E16. Contrary to SCDGF/PDGF-C/fallotein, SCDGF-B/PDGF-D expression was notable in several nuclei at adult.  相似文献   

20.
Proteins encoded by the fringe family of genes are required to modulate Notch signalling in a wide range of developmental contexts. Using a cell co-culture assay, we find that mammalian Lunatic fringe (Lfng) inhibits Jagged1-mediated signalling and potentiates Delta1-mediated signalling through Notch1. Lfng localizes to the Golgi, and Lfng-dependent modulation of Notch signalling requires both expression of Lfng in the Notch-responsive cell and the Notch extracellular domain. Lfng does not prevent binding of soluble Jagged1 or Delta1 to Notch1-expressing cells. Lfng potentiates both Jagged1- and Delta1-mediated signalling via Notch2, in contrast to its actions with Notch1. Our data suggest that Fringe-dependent differential modulation of the interaction of Delta/Serrate/Lag2 (DSL) ligands with their Notch receptors is likely to have a significant role in the combinatorial repertoire of Notch signalling in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号