首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report data of a naturally occurring radionuclide, 234Th, an in situ tracer, to investigate vertical export of biogenic matter during a vernal bloom of Phaeocystis pouchetii in the fjords of northern Norway. To optimise sampling of different stages of the bloom, three fjords with increasing oceanic influence (Balsfjord, Malangen fjord and Ullsfjord, respectively) were investigated in April 1997. Contrasting situations were encountered between the three fjords: the proliferation of P. pouchetii in Ullsfjord surface waters coincided with a drastic reduction of particulate 234Th fluxes in traps, although particulate organic carbon (POC) and dimethylsulphoniopropionate (DMSP) were exported and 234Th was available in surface waters. When large colonies make up a significant fraction of the vertical flux, as observed in Ullsfjord in April 1997, there may be a large and rapid change in the POC/234Th ratio, further complicating the use of 234Th as a tracer for POC export. The results suggest that the proliferation of Phaeocystis pouchetii during vernal bloom could temporary increase OC/234Th ratio of particles and delay the particulate export of 234Th, and probably of other particle-reactive species, from surface waters.  相似文献   

2.
Despite recent advances in molecular and metagenomic approaches, it is still unclear how spatiotemporal variations in microbial communities influence the biological pump, exporting organic carbon from the surface to the deep oceans. We address this important problem by constructing a simple model of a prokaryotic metacommunity in which two generalist ecotypes compete for two resources. The first and the second ecotypes have, respectively, a higher preference for particulate organic carbon (POC) and dissolved organic carbon. Sinking of POC would lead to a higher abundance of the first ecotype in the deep layer compared to the surface layer, but vertical mixing in turn generates a net upward flux of this ecotype to the surface layer. This upward movement accelerates the shifts in the community composition during the phytoplankton bloom, contributing to a higher efficiency in POC remineralization at the surface layer and reducing the carbon flux to the deep layer.  相似文献   

3.
Sampling of the central region of the North Sea was carried out to study the spatial and seasonal changes of dissolved and particulate organic C (DOC and POC, respectively). The surface waters were collected during four cruises over a year (Autumn 2004–Summer 2005). DOC and POC concentrations were measured using high temperature catalytic oxidation methods. The surface water concentrations of DOC and POC were spatially and temporally variable. There were significantly different concentrations of DOC and POC between the inshore and offshore waters in winter and summer only, with no clear trend in autumn and spring. Highest mean concentrations of DOC were measured in spring with lower and similar mean concentrations for other seasons. POC showed a clear seasonal cycle throughout the year with highest surface mean concentrations found in autumn and spring, but lowest in winter and summer. The DOC distributions during autumn and spring were strongly correlated with chlorophyll suggesting extracellular release from phytoplankton was an important DOC source during these two seasons. The lower concentrations of DOC in summer were probably due to the heterotrophic uptake of labile DOC. The seasonal changes in the C:N molar ratios of surface DOM (dissolved organic matter) resulted in higher mean C:N molar ratios in spring and lower ratios in winter. These high ratios may indicate nutrient limitation of heterotrophic uptake immediately after the spring bloom. There is limited data available for DOC cycling in these productive shelf seas and these results show that DOC is a major component of the C cycle with partial decoupling of the DOC and DON cycling in the central North Sea during the spring bloom. Handling editor: Luigi Naselli-Flores  相似文献   

4.
The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast.  相似文献   

5.
The export of carbon through the biological pump from the surface to the deep ocean has a direct influence on the removal of CO2 from the atmosphere. This is because the carbon is sequestered for only a few days to months in the surface while the carbon removed from the surface to deep waters takes hundreds of years to re-enter the atmosphere. The highest dissolved inorganic carbon (DIC) is expected in the deep waters of the North Pacific due to longer age of waters. On contrary, the higher deep water DIC is found in the northern Indian Ocean than elsewhere in the World Oceans. The sinking fluxes of particulate organic (POC) and inorganic carbon (CaCO3) are found to be the highest in the northern Indian Ocean. The rates of bacterial respiration, organic carbon regeneration and inorganic carbon dissolution are also found to be the highest in the northern Indian Ocean than elsewhere. A most efficient biological pump appears to be operating in the northern Indian Ocean that transports surface-derived organic/inorganic carbon to deeper layers where it is converted and stored for longer times in dissolved inorganic form.  相似文献   

6.
We investigate the carbon dynamics in Guanabara Bay, an eutrophic tropical coastal embayment surrounded by the megacity of Rio de Janeiro (southeast coast of Brazil). Nine sampling campaigns were conducted for dissolved, particulate and total organic carbon (DOC, POC and TOC), dissolved inorganic carbon (DIC), partial pressure of CO2 (pCO2), chlorophyll a (Chl a), pheo-pigments and ancillary parameters. Highest DOC, POC and Chl a concentrations were found in confined-shallow regions of the bay during the summer period with strong pCO2 undersaturation, and DOC reached 82 mg L?1, POC 152 mg L?1, and Chl a 800 μg L?1. Spatially and temporally, POC and DOC concentrations varied positively with total pigments, and negatively with DIC. Strong linear correlations between these parameters indicate that the production of TOC translates to an equivalent uptake in DIC, with 85% of the POC and about 50% of the DOC being of phytoplanktonic origin. Despite the shallow depths of the bay, surface waters were enriched in POC and DOC relative to bottom waters in periods of high thermohaline stratification. The seasonal accumulation of phytoplankton-derived TOC in the surface waters reached about 105 g C m?2 year?1, representing between 8 and 40% of the net primary production. The calculated turnover time of organic carbon was 117 and 34 days during winter and summer, respectively. Our results indicate that eutrophication of coastal bays in the tropics can generate large stocks of planktonic biomass and detrital organic carbon which are permanently being produced and partially degraded and buried in sediments.  相似文献   

7.
Eddies play a critical role in regulating the biological pump by pumping new nutrients to the euphotic zone. However, the effects of cyclonic eddies on particle export are not well understood. Here, biogenic silica (BSi) and particulate organic carbon (POC) exports were examined inside and outside a decaying cyclonic eddy using 234Th-238U disequilibria in the tropical South China Sea. For the eddy and outside stations, the average concentrations of BSi in the euphotic zone were 0.17±0.09 μmol L-1 (mean±sd, n = 20) and 0.21±0.06 μmol L-1 (n = 34). The POC concentrations were 1.42±0.56 μmol L-1 (n = 34) and 1.30±0.46 μmol L-1 (n = 51). Both BSi and POC abundances did not show change at the 95% confidence level. Based on the 234Th-238U model, BSi export fluxes in the eddy averaged 0.18±0.15 mmol Si m-2 d-1, which was comparable with the 0.40±0.20 mmol Si m-2 d-1 outside the eddy. Similarly, the average POC export fluxes were 1.5±1.4 mmol C m-2 d-1 and 1.9±1.3 mmol C m-2 d-1 for the eddy and outside stations. From these results we concluded that cyclonic eddies in their decaying phase have little effect on the abundance and export of biogenic particles.  相似文献   

8.
Seasonal variability of nutrients and productivity were examined in Pyramid Lake, a hyposaline, N-deficient, terminal desert lake, during a dry period. River inflow and N-fixation during 1990 were minimal allowing internal nutrient cycling to be more closely studied. Nutrient cycling was strongly affected by seasonal thermal stratification that was typical for a warm monomictic lake. Concentrations of nitrate, phosphate, and silicate in surface waters were highest during winter mixing and decreased rapidly in the spring due to a diatom bloom. Maximum average chlorophyll concentration in surface waters was 2.7 ± 1.2 µg 1–1 and occurred in April while surface nutrients were being depleted. In contrast to chlorophyll, maximum particulate carbon in surface waters occurred in July–August when areal productivity was highest (367–398 mg C m–2 day–1). Concurrent with spring nutrient depletion in surface waters was increasing N-deficiency in the plankton. After the spring bloom dissipated in May, particulate matter (POM) became increasingly N-deficient reaching maximum elemental C : N of > 18 during summer-fall. Profiles of the C : N ratio of POM were nearly constant with depth for individual sampling dates suggesting that the residence time of POM in the water column was short (< 1 month). While surface waters were nutrient depleted during summer stratification, nutrient concentrations of bottom waters progressively increased, presumably through the oxidation of POM sinking to the bottom (103 m). Converting the rate of oxygen depletion in bottom waters to carbon equivalents of POM suggests that 42 % of mean annual phytoplankton production in overlying waters during 1990 was mineralized in bottom waters.  相似文献   

9.
The proportion in which carbon and growth-limiting nutrients are exported from the oceans’ productive surface layer to the deep sea is a crucial parameter in models of the biological carbon pump. Based on >400 vertical flux observations of particulate organic carbon (POC) and nitrogen (PON) from the European Arctic Ocean we show the common assumption of constant C:N stoichiometry not to be met. Exported POC:PON ratios exceeded the classical Redfield atomic ratio of 6.625 in the entire region, with the largest deviation in the deep Central Arctic Ocean. In this part the mean exported POC:PON ratio of 9.7 (a:a) implies c. 40% higher carbon export compared to Redfield-based estimates. When spatially integrated, the potential POC export in the European Arctic was 10–30% higher than suggested by calculations based on constant POC:PON ratios. We further demonstrate that the exported POC:PON ratio varies regionally in relation to nitrate-based new production over geographical scales that range from the Arctic to the subtropics, being highest in the least productive oligotrophic Central Arctic Ocean and subtropical gyres. Accounting for variations in export stoichiometry among systems of different productivity will improve the ability of models to resolve regional patterns in carbon export and, hence, the oceans’ contribution to the global carbon cycle will be predicted more accurately.  相似文献   

10.
不同退耕年限对菜子湖湿地表土有机碳组分与质量的影响   总被引:6,自引:0,他引:6  
汪青  张平究  孟向东 《生态学杂志》2012,31(8):2038-2043
退耕还湿后土壤有机碳不同组分变化和有机碳质量的评价是退耕湿地生态恢复研究的重要内容。对安徽菜子湖湿地不同退耕年限(2、5、8、10和20a)的湿地土壤总有机碳(TOC)、颗粒态有机碳(POC)和矿物结合态有机碳(MOC)的含量与有机碳质量进行了研究。结果表明,随着退耕年限增加,土壤TOC、POC、MOC含量均有显著增加,且退耕后土壤有机碳增加过程中,以POC为代表的活性有机碳优先恢复,而以MOC为代表的稳定有机碳恢复相对滞后。随着退耕年限增加,POC/MOC、TOC和POC的层化比(SR)增加,反映有机碳的活性明显提高。退耕期间所增加的有机碳在组成上以易降解的POC为主,在分布上以易降解的表层有机碳居多,因此有机碳库的稳定性并未明显提高。通过计算碳库管理指数(CPMI),发现土壤质量随着退耕年数增加而提高,根据CPMI变化趋势线,土壤质量大约需要13a才能恢复到对照水平;退耕湿地生态恢复过程中,有机碳数量(碳库指数CPI)恢复较快,而有机碳质量(碳库活度指数AI)恢复需要较长的时间,二者分别需7.6和22.7a恢复到对照水平。  相似文献   

11.
Vidal-Abarca  M. R.  Suárez  M. L.  Guerrero  C.  Velasco  J.  Moreno  J. L.  Millán  A.  Perán  A. 《Hydrobiologia》2001,455(1-3):71-78
Annual variations in the concentration of dissolved (DOC) and particulate organic carbon (CPOC = Coarse; FPOC = Fine; UPOC = Ultrafine) were studied in a 100 m-reach of the Chicamo stream, an intermittent saline stream in southeast Spain. DOC represented the most important fraction of organic carbon flowing in the Chicamo stream (>98%), with concentrations of about 1.7 mgC l–1 during most of the year, reaching 2.5 mgC l–1 in summer. One high flow episode during a rain storm in winter was characterized by a considerably increased concentration of DOC (9.4 mgC l–1). CPOC was the dominant POC fraction. Positive and significant correlations were found for DOC and discharge, which support the idea of allochthonous inputs due to floods. There was no significant correlation between POC and discharge. No significant correlations were found for DOC or POC with the physico-chemical parameters measured, while a negative significant correlation was found between DOC and temperature. The export of total organic carbon from the drainage basin of the Chicamo stream was low (6.2 × 10–4 gC m–2 yr–1) and typical of streams in arid and semi-arid regions. The results of a Principal Component Analysis defined three different phases. The first consisted of short periods, during which floods provide pulses of allochthonous organic carbon and nutrients, the second a dry phase (summer), defined by biotic interactions, during which the stream could acts as a `sink' of organic matter, and the third and final phase which is characterised by hydrological stability.  相似文献   

12.
The physical and biological dynamics that influence phytoplankton communities in the oligotrophic ocean are complex, changing across broad temporal and spatial scales. Eukaryotic phytoplankton (e.g., diatoms), despite their relatively low abundance in oligotrophic waters, are responsible for a large component of the organic matter flux to the ocean interior. Mesoscale eddies can impact both microbial community structure and function, enhancing primary production and carbon export, but the mechanisms that underpin these dynamics are still poorly understood. Here, mesoscale eddy influences on the taxonomic diversity and expressed functional profiles of surface communities of microeukaryotes and particle-associated heterotrophic bacteria from the North Pacific Subtropical Gyre were assessed over 2 years (spring 2016 and summer 2017). The taxonomic diversity of the microeukaryotes significantly differed by eddy polarity (cyclonic versus anticyclonic) and between sampling seasons/years and was significantly correlated with the taxonomic diversity of particle-associated heterotrophic bacteria. The expressed functional profile of these taxonomically distinct microeukaryotes varied consistently as a function of eddy polarity, with cyclones having a different expression pattern than anticyclones, and between sampling seasons/years. These data suggest that mesoscale forcing, and associated changes in biogeochemistry, could drive specific physiological responses in the resident microeukaryote community, independent of species composition.  相似文献   

13.
Pelagic carbon metabolism in a eutrophic lake during a clear-water phase   总被引:1,自引:0,他引:1  
Dissolved and paniculate organic carbon (DOC and POC, respectively),primary production, bacterial production, bacterial carbon demandand community grazing were measured for 9 weeks in eutrophicFrederiksborg Slotssø. The period covered the declineof the spring bloom, a clear-water phase and a summer phasewith increasing phytoplankton biomass. The process rates andchanges in pools of organic carbon were combined in a carbonbudget for the epilimnion. The POC budget showed a close balancefor both the post-spring bloom and the clear-water phase, whilea surplus was found in the summer phase. Production of POC wasdominated by phytoplankton (2/3) compared to bacteria (1/3)during all phases, and there was a significant correlation betweenphytoplankton and bacterial production rates (r2 = 0.48, P <0.039). Bacterial demand for DOC was balanced by productionand changes in the pool of DOC during the decline of the springbloom, but the calculated demand exceeded the supply by 81 and167%, respectively, during the other two periods. The discrepancywas most probably due to an underestimation of bacterial growthefficiency and an overestimation of in situ bacterial productionin carbon units. Production of bacterial substrate by zooplanktonactivity was estimated to be higher than the direct excretionof organic carbon from phytoplankton. The biological successionwas regulated by the balance between area primary productionand community grazing. The clear-water phase was initiated bya combination of low primary production due to low surface irradianceand high community grazing (100 mmol C m–2 day–1),which caused a decrease in phytoplankton biomass. However, dueto the high initial phytoplankton biomass, community grazingwas not high enough to cause a significant decrease in areaprimary production. The summer phase was initiated by a decreasein community grazing followed by an increase in phytoplanktonbiomass. Based on these observations and calculations of areaprimary production as a function of chlorophyll concentrations,we suggest that the possibility for zooplankton to regulatephytoplankton biomass in temperate lakes decreases with increasingnutrient level.  相似文献   

14.
15.
Export of autochthonously produced particulate organic carbon (POC) is a globally important mechanism for sequestering carbon in the deep sea. The role of microbial hydrolytic activity in attenuating POC flux is generally understudied, and particularly complex on Arctic continental shelves influenced by other sources of POC. To evaluate this role, we used fluorogenic substrate analogs to measure extracellular enzyme activity (EEA) associated with particle size fractions considered suspended (1–70 μm) and sinking (>70 μm). Samples were collected by in situ filtration at depths of 25–100 m at ten stations (156–1,142 m deep) in the Amundsen Gulf and Beaufort Sea in June–July, 2008, during the Circumpolar Flaw Lead project. Significant positive correlations observed between EEA and both chlorophyll a and δ13CPOC suggest that EEA is elevated in waters dominated by marine-derived POC. No difference in bulk EEA was observed between size fractions, but POC- and cell-specific EEA was significantly elevated on sinking aggregates. Calculations show that 2–44% of carbon retention in surface waters could be attributed to mobilization by enzymes associated with sinking aggregates, and up to 57% if enzymes associated with suspended particles are included. Model results suggest that microbial attenuation of POC below the euphotic zone is a quantitatively important mechanism for carbon loss, especially when particles are sinking slowly. The role of microbes in attenuating POC flux on Arctic shelves appears to have been underestimated previously and may become increasingly important if climate warming brings increased marine productivity.  相似文献   

16.
Biogenic silica (BSi), lithogenic silica (LSi), particiulate organic carbon (POC) and nitrogen (PON), and chlorophyll a (Chl a) concentration levels were measured in the surface waters (<100 m) off the northern coast of the South Shetland Islands in summer 1991. High concentration levels of BSi and LSi were recorded in the oceanic area and the coastal area, respectively. However, marked regional differences were not observed for POC, PON and Chl a concentrations. The mean BSi/POC atomic ratio (±SD) in the oceanic area (0.27±0.17) was 6 times that in the coastal area (0.045±0.020), except for the bloom situation (0.19±0.029). In contrast, the mean POC/PON atomic ratio was not significantly different in the coastal area (5.9±1.4) and the oceanic area (5.2±1.7). Nitzschia spp. were the dominant diatoms in the oceanic area but not in the coastal area. High BSi/POC ratios have been reported for blooms dominated by Nitzschia spp. even in the coastal regions of the Antarctic Ocean. The area difference in the BSi/POC ratios was probably related to the difference in species composition of phytoplankton and not to regional contrast. This species contributes significantly to high BSi/POC ratios in the Antarctic Ocean.  相似文献   

17.
Summary Changes in the concentrations of bacteria, phytoplankton, protozoa, dissolved organic carbon (DOC), particulate organic carbon (POC), particulate carbohydrate (PCHO) and particulate organic nitrogen (PON) were followed throughout the summer at an Antarctic coastal site. The colonial prymnesiophyte Phaeocystis pouchetii was the first major phytoplankton species to bloom, reaching concentrations of 6 × 107 cells · 1–1 and remained numerically dominant for most of the summer. During the P. pouchetii bloom the concentration of most other autotrophs did not increase. Microheterotroph abundance peaked during or immediately after the Phaeocystis bloom. Their peak coincided with very high concentrations of organic carbon, particularly DOC which exceeded 100 mg · 1–1, and low bacterial abundance. Maximum bacterial abundance was reached after the decline in microheterotroph numbers. Bacterial utilization of carbon substrates and microheterotroph grazing of bacteria and uptake of DOC may form an important link to higher trophic levels during Antarctic Phaeocystis blooms.  相似文献   

18.
The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched with the12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms; this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature allows an inference to be made about the considerable seasonable variability of the POC δ13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter.  相似文献   

19.
The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched with the 12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms; this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature allows an inference to be made about the considerable seasonable variability of the POC delta 13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter.  相似文献   

20.
Marine planktonic organisms that undertake active vertical migrations over their life cycle are important contributors to downward particle flux in the oceans. Acantharia, globally distributed heterotrophic protists that are unique in building skeletons of celestite (strontium sulfate), can produce reproductive cysts covered by a heavy mineral shell that sink rapidly from surface to deep waters. We combined phylogenetic and biogeochemical analyses to explore the ecological and biogeochemical significance of this reproductive strategy. Phylogenetic analysis of the 18S and 28S rRNA genes of different cyst morphotypes collected in different oceans indicated that cyst-forming Acantharia belong to three early diverging and essentially non symbiotic clades from the orders Chaunacanthida and Holacanthida. Environmental high-throughput V9 tag sequences and clone libraries of the 18S rRNA showed that the three clades are widely distributed in the Indian, Atlantic and Pacific Oceans at different latitudes, but appear prominent in regions of higher primary productivity. Moreover, sequences of cyst-forming Acantharia were distributed evenly in both the photic and mesopelagic zone, a vertical distribution that we attribute to their life cycle where flagellated swarmers are released in deep waters from sinking cysts. Bathypelagic sediment traps in the subantarctic and oligotrophic subtropical Atlantic Ocean showed that downward flux of Acantharia was only large at high-latitudes and during a phytoplankton bloom. Their contribution to the total monthly particulate organic matter flux can represent up to 3%. High organic carbon export in cold waters would be a putative nutritional source for juveniles ascending in the water column. This study improves our understanding of the life cycle and biogeochemical contribution of Acantharia, and brings new insights into a remarkable reproductive strategy in marine protists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号