首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

2.
Astacus leptodactylus is a decapod crustacean fully adapted to freshwater where it spends its entire life cycle after hatching under huge osmoconcentration differences between the hemolymph and surrounding freshwater. We investigated the expression of mRNA encoding one ion transport-related protein, Na+/K+-ATPase α-subunit, and one putative housekeeping gene, β-actin, during crayfish ontogenesis using quantitative real-time PCR. A 216-amino acid part of the open reading frame region of the cDNA coding for the Na+/K+-ATPase α-subunit was sequenced from total embryo, juvenile and adult gill tissues. The predicted amino acid sequence showed a high percentage similarity to those of other invertebrates (up to 95%) and vertebrates (up to 69%). β-actin expression exhibited modest changes through embryonic development and early post-embryonic stage. The Na+/K+-ATPase α-subunit gene was expressed in all studied stages from metanauplius to juvenile. Two peaks of expression were observed: one in young embryos at 25% of embryonic development (EI = 100 μm), and one in embryos just before hatching (at EI = 420 μm), continuing in the freshly hatched juveniles. The Na+/K+-ATPase expression profile during embryonic development is time-correlated with the occurrence of other features, including ontogenesis of excretory antennal glands and differentiation of gill ionocytes linked to hyperosmoregulation processes and therefore involved in freshwater adaptation.  相似文献   

3.
4.
This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter’s EO and the Sach’s EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter’s EOs and weakly in the Sach’s EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter’s EO have high densities of Na+ channels and produce high voltage discharges while the Sach’s EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest V max of Nka were detected in the main EO and the Sach’s EO, respectively, with the Hunter’s EO having a V max value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge.  相似文献   

5.
Regulation of the Na+/K+-ATPase by insulin: Why and how?   总被引:4,自引:0,他引:4  
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.  相似文献   

6.
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4 -.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.  相似文献   

7.
The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions.  相似文献   

8.
9.
10.
It was found that ouabain and marinobufagenin, specific inhibitors of Na+,K+-ATPase, increased the contraction of the isolated rat diaphragm by ~15% (positive inotropic effect) at EC50 = 1.2 ± 0.3 nM and 0.3 ± 0.1 nM, respectively, which was indicative of the participation of the ouabain-sensitive Na+,K+-ATPase α2 isoform. Analysis of the dose-response curves for the effect of ouabain on the resting membrane potential of muscle fibers in the absence and in the presence of 100 nM acetylcholine (hyperpolarizing the membrane) showed the presence of two pools of Na+,K+-ATPase α2 that differed in affinity for ouabain. Only the high-affinity pool (IC50 ~ 9 nM) mediates the hyperpolarizing effect of nanomolar concentrations of acetylcholine. Most likely, it is this pool of that is involved in the positive inotropic effect of ouabain, which can be a mechanism of regulation of the muscle function by circulating endogenous inhibitors of Na+,K+-ATPase.  相似文献   

11.
Ferret heart expresses the α1- as well as the α3-isoform of the Na+, K+-ATPase. We have shown previously that the α3 isoform is differentially upregulated during postnatal cardiac development and that in adult ferrets expression of α3 is not responsive to regulation by thyroid hormone (TH). Since developmental-stage dependent effects of TH have been reported previously, the present study examined whether effects of TH on expression of the Na+, K+-ATPase isoforms in ferret heart is modulated during development and possible mechanisms were examined. Ferrets of different age groups were treated with TH and the relative abundance of Na+, K+-ATPase isoforms in ferret myocardium was determined by immunoblotting. Thyroid hormone (T3; 50 μg/100 g body weight on 3 alternating days, s.c.) increased protein levels of the α3 isoform, but not that of α1 or β1, in myocardium of 5-day-old and 3-week-old ferrets. By contrast, in myocardium of 6- and 8-week-old ferrets T3 failed to increase protein levels of α1 and α3. To determine whether elevated plasma levels of TH during development plays a role in the transition, mature ferrets were first made hypothyroid before TH treatment. In these hypothyroid ferrets expression of the α3 isoform remained unresponsive to TH (T4, 0.5 mg/kg for 7 days, s.c.). The transition from TH-responsive to TH-unresponsive appears to be isoform-specific because in skeletal muscle of 8-week-old ferrets and in hypothyroid ferrets the α2 isoform is upregulated by TH. Finally, there appears to be functional thyroid hormone receptors throughout development because in each age group TH effectively induced expression of α-MHC in the myocardium. In conclusion, these findings demonstrate that expression of α3 isoform in the myocardium of newborn ferret is responsive to TH; however, the responsiveness terminates between 3- and 6-weeks of age. Neither elevated endogenous TH level nor a lack of functional thyroid hormone receptor appears to be responsible for the transition from TH-responsive to TH-unresponsive.  相似文献   

12.

Background

The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term “blood-labyrinth-barrier”. This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na+/K+-ATPase α1 (ATP1A1) with protein kinase C eta (PKCη) and occludin is one of the mechanisms of loud sound-induced vascular permeability increase.

Methodology/Principal Findings

Using a mass-spectrometry, shotgun-proteomics approach combined with a novel “sandwich-dissociation” method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma.

Conclusions/Significance

The results presented here provide a novel method for capillary isolation from the inner ear and the first database on protein components in the blood-labyrinth-barrier. Additionally, we found that ATP1A1 interaction with PKCη and occludin was involved in the integrity of the blood-labyrinth-barrier.  相似文献   

13.
14.
Myshkin mice heterozygous for an inactivating mutation in the neuron-specific Na(+) ,K(+) -ATPase α3 isoform show behavior analogous to mania, including an abnormal endogenous circadian period. Agrin is a proteoglycan implicated as a regulator of synapses that has been proposed to inhibit activity of Na(+) ,K(+) -ATPase α3. We examined whether the mania-related behavior of Myshkin mice could be rescued by a reduction in the expression of agrin through genetic knockout. The suppression of agrin reduced hyperambulation and holeboard exploration, restored anxiety-like behavior (or reduced risk-taking behavior), improved prepulse inhibition and shortened the circadian period. Hence, agrin is important for regulating mania-like behavior and circadian rhythms. In Myshkin mice, the suppression of agrin increased brain Na(+) ,K(+) -ATPase activity by 11 ± 4%, whereas no effect on Na(+) ,K(+) -ATPase activity was detected when agrin was suppressed in mice without the Myshkin mutation. These results introduce agrin as a potential therapeutic target for the treatment of mania and other neurological disorders associated with reduced Na(+) ,K(+) -ATPase activity and neuronal hyperexcitability.  相似文献   

15.
This study examined the changes in protein phosphorylation in response to cholinergic (muscarinic) stimulation of salivary secretion in the rat submandibular gland. Carbachol stimulation was associated with phosphorylation in a number of protein bands as detected by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and autoradiography. The molecular masses (Mr) of two proteins, in which the amount of phosphorylation more than doubled in response to carbachol, were 22 000 and 96 000. The Mr 96 000 protein precipitated at 120 000 × g while most of the Mr 22 000 protein remained in the supernatant at this speed. The effect of carbachol on the phosphorylation of the Mr 22 000 and 96 000 proteins was blocked by atropine, indicating that the cholinergic receptor involved is muscarinic. The time course of phosphorylation of the Mr 22 000 protein consisted of a rapid incrase in phosphorylation within the first min of carbachol stimulation. This increased phosphorylation persisted for less than 1 min. The increased phosphoryaltion of the Mr 96 000 protein also occurred within the first min but it persisted for at least 10 min. However, removal of the muscarinic agonist, carbachol, resulted in the rapid dephosphorylation of this protein. When the plasma membranes were purified, the Mr 96 000 protein was phosphorylated by ATP in the presence of Na+ and Mg2+. It was dephosphorylated by K+. This proves that the Mr 96 000 dalton protein is the α-subunit of the (Na+ + K+)-ATPase.  相似文献   

16.
(Na+ + K+)-ATPase from dog kidney lost its activity when heated at 55°C in the presence of 0.3 M 2-mercaptoethanol. Either heat treatment alone or addition of reducing agent at around 25°C caused little inactivation. One disulfide bond per protomer (mol. wt. 146000) was reduced in the inactivated sample but in active samples no reduction occurred. Neither K+-dependent phosphatase activity nor phosphoenzyme formation in the presence of Na+ was detected in the inactivated sample, suggesting that the disulfide bond was essential for the catalytic cycle of (Na+ + K+)-ATPase. This essential disulfide bond belonged to the β-subunit, the glycoprotein component of the enzyme, indicating that the β-subunit may be an integral component of the (Na+ + K+)-ATPase system.  相似文献   

17.
Rapid-onset dystonia parkinsonism (RDP), a rare neurological disorder, is caused by mutation of the neuron-specific α3-isoform of Na+,K+-ATPase. Here, we present the functional consequences of RDP mutation D923N. Relative to the wild type, the mutant exhibits a remarkable ∼200-fold reduction of Na+ affinity for activation of phosphorylation from ATP, reflecting a defective interaction of the E1 form with intracellular Na+. This is the largest effect on Na+ affinity reported so far for any Na+,K+-ATPase mutant. D923N also affects the interaction with extracellular Na+ normally driving the E1P to E2P conformational transition backward. However, no impairment of K+ binding was observed for D923N, leading to the conclusion that Asp923 is specifically associated with the third Na+ site that is selective toward Na+. The crystal structure of the Na+,K+-ATPase in E2 form shows that Asp923 is located in the cytoplasmic half of transmembrane helix M8 inside a putative transport channel, which is lined by residues from the transmembrane helices M5, M7, M8, and M10 and capped by the C terminus, recently found involved in recognition of the third Na+ ion. Structural modeling of the E1 form of Na+,K+-ATPase based on the Ca2+-ATPase crystal structure is consistent with the hypothesis that Asp923 contributes to a site binding the third Na+ ion. These results in conjunction with our previous findings with other RDP mutants suggest that a selective defect in the handling of Na+ may be a general feature of the RDP disorder.  相似文献   

18.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic α-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progessively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight α-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the α-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

19.
The Na+/K+-ATPase mediates electrogenic transport by exporting three Na+ ions in exchange for two K+ ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb+ ions in the crystal structures of the Na+/K+-ATPase has defined two “common” cation binding sites, I and II, which accommodate Na+ or K+ ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this “unique” Na+ binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na+/K+-ATPase α2 subunit decreases the affinity for extracellular and intracellular Na+, in agreement with previous biochemical studies. Apparently, the ΔYY deletion changes Na+ affinity at site III but leaves the common sites unaffected, whereas the more extensive ΔKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K+, the ΔYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na+ dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na+/Na+ exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na+ release/binding mechanism. In analogy to the mechanism proposed for the H+ leak currents of the wild-type Na+/K+-ATPase, we suggest that the ΔYY deletion lowers the energy barrier for the intracellular Na+ occlusion reaction, thus destabilizing the Na+-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the carboxy terminus. Thus, the carboxy terminus of the Na+/K+-ATPase α subunit represents a structural and functional relay between Na+ binding site III and the intracellular cation occlusion gate.  相似文献   

20.
We assessed the effects of dietary fatty acid composition on sodium–potassium ATPase (Na+/K+-ATPase) activity and isoform expression in the gills of juvenile fall chinook salmon, Oncorhynchus tshawytscha by supplementing diets with either anchovy oil (AO) or AO blended with canola oil (CO) so that CO comprised 0% (0CO), 11% (11CO), 22% (22CO), 33% (33CO), 43% (43CO), or 54% (54CO) of the measured dietary lipid content. The effects of diet were assessed in freshwater (FW) following 104 days of diet manipulation, in response to 24-h seawater (SW) transfer at this time, and following an additional 35 days of SW acclimation. Gill Na+/K+-ATPase activity was not significantly affected by diet at any sampling time, and there were no consistent effects of diet on the expression of the Na+/K+-ATPase α1a isoform. As dietary CO increased, Na+/K+-ATPase α1b mRNA decreased in fish held in FW, with the 43CO and 54CO diet groups having significantly lower levels than fish fed the 0CO and 11CO diets. Twenty-four-hour SW challenge did not affect the expression of the Na+/K+-ATPase α1a isoform in any diet group, but this isoform was down-regulated in all diet groups following 35 days of SW acclimation. Na+/K+-ATPase α1b expression levels increased in response to 24-h SW transfer and SW acclimation only in fish fed the 54CO diet. The effects of the two extreme diets (0CO and 54CO) were also assessed at various time points during 104 days of rearing in FW. Na+/K+-ATPase α1b mRNA levels were greater in fish fed diet 0CO versus those fed diet 54CO at all times during the FW culture period. These data demonstrate that dietary fatty acid composition can influence the gill Na+/K+-ATPase isoform physiology of juvenile fall-run chinook salmon prior to SW transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号