首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Intramuscularly delivered plant-derived M-HBsAg was compared to S-HBsAg, and as a result elicited specific anti-preS2 antibodies and significantly higher titre of anti-HBs antibodies, together with IgG isotype profile indicating some Th1 polarisation, apart from the main Th2 response.

Abstract

HBV prevalence is still threatening, regardless of prevention programmes using vaccines containing S-HBsAg, supplemented by third-generation vaccines, comprising also M- and L-HBsAg. Plant expression systems offer a cost-effective production option of the antigens. Plant-derived S- and M-HBsAg, intramuscularly delivered to mice, elicited anti-HBs antibodies several times higher than high responsiveness threshold titre. M-HBsAg induced stronger response of anti-HBs and also specific anti-preS2 antibodies. IgG isotype profiles indicated mainly Th2 response, yet Th1 polarisation was also pointed out, in some larger extent for M-HBsAg. These results correspond to research on CHO-derived M-HBsAg vs. commercial vaccines based on S-HBsAg and support potency of plant-derived antigens as alternative injection vaccines.
  相似文献   

2.
Current immunisation programmes against hepatitis B virus (HBV) increasingly often involve novel tri-component vaccines containing—together with the small (S-HBsAg)—also medium and large surface antigens of HBV (M- and L-HBsAg). Plants producing all HBsAg proteins can be a source of components for a potential oral ‘triple’ anti-HBV vaccine. The objective of the presented research was to study the potential of M/L-HBsAg expression in leaf tissue and conditions of its processing for a prototype oral vaccine. Tobacco and lettuce carrying M- or L-HBsAg genes and resistant to the herbicide glufosinate were engineered and integration of the transgenes was verified by PCR and Southern hybridizations. M- and L-HBsAg expression was confirmed by Western blot and assayed by ELISA at the level of micrograms per g of fresh weight. The antigens displayed a common S domain and characteristic domains preS2 and preS1 and were assembled into virus-like particles (VLPs). Leaf tissues containing M- and L-HBsAg were lyophilised to produce a starting material of an orally administered vaccine formula. The antigens were distinctly sensitive to freeze-drying conditions and storage temperature, in the aspect of stability of S and preS domains and formation of multimeric particles. Efficiency of lyophilisation and storage depended also on the initial antigen content in plant tissue, yet M-HBsAg appeared to be approximately 1.5–2 times more stable than L-HBsAg. The results of the study provide indications concerning the preparation of two other constituents, next to S-HBsAg, for a plant-derived prototype oral tri-component vaccine against hepatitis B.  相似文献   

3.
Alterations in glycosylation play an important role during intestinal cell differentiation. Here, we compared expression of mucin-type O-glycan synthases from proliferating and differentiated HT-29 and Caco-2 cells. Mucin-type O-glycan structures were analyzed at both stages by mass spectrometry. Core2 β1,6-N-acetylglucosaminyltransferase-2 (C2GnT-2) was markedly increased in differentiated HT-29 and Caco-2 cells, but the core3 structure was hardly detectable. To determine whether such differential expression of mucin-type O-glycan structures has physiological significance in intestinal cell differentiation, expression of sucrase isomaltase (SI) and dipeptidyl-peptidase IV (DPP-IV), two well known intestinal differentiation markers, was examined. Interestingly, the fully glycosylated mature form of SI was decreased in C2GnT-2 knock-out mice but not in core2 N-acetylglucosaminyltransferase-3 (C2GnT-3) nulls. In addition, expression of SI and DPP-IV was dramatically reduced in C2GnT-1–3 triple knock-out mice. These patterns were confirmed by RNAi analysis; C2GnT-2 knockdown significantly reduced cell surface expression of SI and DPP-IV in Caco-2 cells. Similarly, overexpression of the core3 structure in HT-29 cells attenuated cell surface expression of both enzymes. These findings indicate that core3 O-glycan structure regulates cell surface expression of SI and DPP-IV and that core2 O-glycan is presumably an essential mucin-type O-glycan structure found in both molecules in vivo. Finally, goblet cells in the upper part of the crypt showed impaired maturation in the core2 O-glycan-deficient mice. These studies are the first to clearly identify functional mucin-type O-glycan structures modulating cell surface expression of SI and DPP-IV during the intestinal cell differentiation.  相似文献   

4.
The long surface antigen (L-HBsAg) of hepatitis B virus (HBV) plays a central role in the production of infectious virions. During HBV morphogenesis, both the PreS and S domains of L-HBsAg form docking sites for the viral nucleocapsids. Thus, a compound that disrupts the interaction between the L-HBsAg and nucleocapsids could serve as a therapeutic agent against the virus based upon inhibition of morphogenesis. Synthetic peptides correspond to the binding sites in L-HBsAg inhibited the association of L-HBsAg with core antigen (HBcAg). A synthetic peptide carrying the epitope for a monoclonal antibody to the PreS1 domain competed weakly with L-HBsAg for HBcAg, but peptides corresponding to a linear sequence at the tip of the nucleocapsid spike did not, showing that the competing peptide does not resemble the tip of the spike.  相似文献   

5.
Blanchet M  Sureau C 《Journal of virology》2006,80(24):11935-11945
The hepatitis B virus (HBV) envelope proteins have the ability to assemble three types of viral particles, (i) the empty subviral particles (SVPs), (ii) the mature HBV virions, and (iii) the hepatitis delta virus (HDV) particles, in cells that are coinfected with HBV and HDV. To gain insight into the function of the HBV envelope proteins in morphogenesis of HBV or HDV virions, we have investigated subdomains of the envelope proteins that have been shown or predicted to lie at the cytosolic face of the endoplasmic reticulum membrane during synthesis, a position prone to interaction with the inner core structure. These domains, referred to here as cytosolic loops I and II (CYL-I and -II, respectively), were subjected to mutagenesis. The mutations were introduced in the three HBV envelope proteins, designated small, middle, and large (S-HBsAg, M-HBsAg, and L-HBsAg, respectively). The mutants were expressed in HuH-7 cells to evaluate their capacity for self-assembly and formation of HBV or HDV virions when HBV nucleocapsid or HDV ribonucleoprotein, respectively, was provided. We found that SVP-competent CYL-I mutations between positions 23 and 78 of the S domain were permissive to HBV or HDV virion assembly. One mutation (P29A) was permissive for synthesis of the S- and M-HBsAg but adversely affected the synthesis or stability of L-HBsAg, thereby preventing the assembly of HBV virions. Furthermore, using an in vitro infection assay based on the HepaRG cells and the HDV model, we have shown that particles coated with envelope proteins bearing CYL-I mutations were fully infectious, hence indicating the absence of an infectivity determinant in this region. Finally, we demonstrated that the tryptophan residues at positions 196, 199, and 201 in CYL-II, which were shown to exert a matrix function for assembly of HDV particles (I. Komla-Soukha and C. Sureau, J. Virol. 80:4648-4655, 2006), were dispensable for both assembly and infectivity of HBV virions.  相似文献   

6.
Coexistence of hepatitis B surface antigen (HBsAg) and antibody against HBsAg (anti-HBs) comprises an atypical serological profile in patients with chronic hepatitis B virus (HBV) infection. In this study, in total 94 patients with coexisting HBsAg and anti-HBs and 94 age- and sex-matched patients with positive HBsAg were characterized by quantitatively measuring HBsAg and HBV DNA, sequencing large S genes, and observing clinical features. Compared with common hepatitis B patients, the patients with coexisting HBsAg and anti-HBs had lower HBsAg and HBV DNA levels. These two groups had similar rate of pre-S deletion mutations. However, in patients with coexisting HBsAg and anti-HBs, more amino acid substitutions in the a determinant of S gene were observed in HBV genotype C, but not in genotype B. Fourteen patients with coexisting HBsAg and anti-HBs were followed up for an average of 15.5 months. There were no significant changes in the levels of HBsAg, anti-HBs, HBV DNA and ALT over the follow-up period. Compared with the baseline sequences, amino acid substitutions in the MHR of HBsAg occurred in 14.3% (2/14) patients. In conclusion, coexistence of HBsAg and anti-HBs may be associated with higher frequency of mutations in the a determinant of HBV genotype C.  相似文献   

7.
BackgroundCo-infection with human immunodeficiency virus (HIV) and hepatitis B virus (HBV) may lead to accelerated hepatic disease progression with higher rates of liver cirrhosis and liver-related mortality compared with HBV mono-infection. Co or super-infection with hepatitis Delta virus (HDV) may worsen the liver disease and complicate treatment possibilities.MethodsIn this cross-sectional study we included HIV-infected individuals who had a routine blood analysis performed at an HIV clinic in Bissau, Guinea-Bissau between the 28th of April and 30th of September 2011. All patients were interviewed, had a clinical exam performed and had a blood sample stored. The patients'' samples were tested for HBV and HDV serology, and HBV/HDV viral loads were analyzed using in-house real-time PCR methods.ResultsIn total, 576 patients (417 HIV-1, 104 HIV-2 and 55 HIV-1/2) were included in this study. Ninety-four (16.3%) patients were HBsAg positive of whom 16 (17.0%) were HBeAg positive. In multivariable logistic regression analysis, CD4 cell count <200 cells/ µl and animist religion were significantly associated with HBsAg positivity. Due to scarcity of available plasma, virological analyses were not performed for eight patients. HBV DNA was detected in 42 of 86 samples (48.8%) positive for HBsAg and genotyping was performed in 26 patients; 25 of whom had genotype E and one genotype D. Among 9 patients on antiretroviral treatment (ART), one patient had the [L180M, M204V] mutation associated with lamivudine resistance. Among the HBsAg positive patients 25.0% were also positive for anti-HDV and 4/9 (44.4%) had detectable HDV RNA.ConclusionHBV and HDV were frequent co-infections among HIV positive patients in Guinea-Bissau and chronic infection was associated with severe immunosuppression. Lamivudine was widely used among HBsAg positive patients with the risk of developing resistant HBV.  相似文献   

8.

Background and Aims

Chronic infection with the hepatitis B virus (HBV) is a major health issue worldwide. Recently, single nucleotide polymorphisms (SNPs) within the human leukocyte antigen (HLA)-DP locus were identified to be associated with HBV infection in Asian populations. Most significant associations were observed for the A alleles of HLA-DPA1 rs3077 and HLA-DPB1 rs9277535, which conferred a decreased risk for HBV infection. We assessed the implications of these variants for HBV infection in Caucasians.

Methods

Two HLA-DP gene variants (rs3077 and rs9277535) were analyzed for associations with persistent HBV infection and with different clinical outcomes, i.e., inactive HBsAg carrier status versus progressive chronic HBV (CHB) infection in Caucasian patients (n = 201) and HBsAg negative controls (n = 235).

Results

The HLA-DPA1 rs3077 C allele was significantly associated with HBV infection (odds ratio, OR = 5.1, 95% confidence interval, CI: 1.9–13.7; p = 0.00093). However, no significant association was seen for rs3077 with progressive CHB infection versus inactive HBsAg carrier status (OR = 2.7, 95% CI: 0.6–11.1; p = 0.31). In contrast, HLA-DPB1 rs9277535 was not associated with HBV infection in Caucasians (OR = 0.8, 95% CI: 0.4–1.9; p = 1).

Conclusions

A highly significant association of HLA-DPA1 rs3077 with HBV infection was observed in Caucasians. However, as a differentiation between different clinical courses of HBV infection was not possible, knowledge of the HLA-DPA1 genotype cannot be translated into personalized anti-HBV therapy approaches.  相似文献   

9.
Neuropilins are involved in angiogenesis and neuronal development. The membrane proximal domain of neuropilin-1, called c or MAM domain based on its sequence conservation, has been implicated in neuropilin oligomerization required for its function. The c/MAM domain of human neuropilin-1 has been recombinantly expressed to allow for investigation of its propensity to engage in molecular interactions with other protein or carbohydrate components on a cell surface. We found that the c/MAM domain was heavily O-glycosylated with up to 24 monosaccharide units in the form of disialylated core 1 and core 2 O-glycans. Attachment sites were identified on the chymotryptic c/MAM peptide ETGATEKPTVIDSTIQSEFPTY by electron-transfer dissociation mass spectrometry (ETD-MS/MS). For highly glycosylated species consisting of carbohydrate to about 50 %, useful results could only be obtained upon partial desialylation. ETD-MS/MS revealed a hierarchical order of the initial O-GalNAc addition to the four different glycosylation sites. These findings enable future functional studies about the contribution of the described glycosylations in neuropilin-1 oligomerization and the binding to partner proteins as VEGF or galectin-1.As a spin-off result the sialidase from Clostridium perfringens turned out to discriminate between galactose- and N-acetylgalactosamine-linked sialic acid.  相似文献   

10.
Cholera toxin B subunit (CTB) is widely used as a carrier molecule and mucosal adjuvant and for the expression of fusion proteins of interest. CTB-fusion proteins are also expressed in plants, but the N-glycan structures of CTB have not been clarified. To gain insights into the N-glycosylation and N-glycans of CTB expressed in plants, we expressed CTB in rice seeds with an N-terminal glutelin signal and a C-terminal KDEL sequence and analyzed its N-glycosylation and N-glycan structures. CTB was successfully expressed in rice seeds in two forms: a form with N-glycosylation at Asn32 that included both plant-specific N-glycans and small oligomannosidic N-glycans and a non-N-glycosylated form. N-Glycan analysis of CTB showed that approximately 50 % of the N-glycans had plant-specific M3FX structures and that almost none of the N-glycans was of high-mannose-type N-glycan even though the CTB expressed in rice seeds contains a C-terminal KDEL sequence. These results suggest that the CTB expressed in rice was N-glycosylated through the endoplasmic reticulum (ER) and Golgi N-glycosylation machinery without the ER retrieval.  相似文献   

11.
Development of convenient strategies for identification of plant N-glycan profiles has been driven by the emergence of plants as an expression system for therapeutic proteins. In this article, we reinvestigated qualitative and quantitative aspects of plant N-glycan profiling. The extraction of plant proteins through a phenol/ammonium acetate procedure followed by deglycosylation with peptide N-glycosidase A (PNGase A) and coupling to 2-aminobenzamide provides an oligosaccharide preparation containing reduced amounts of contaminants from plant cell wall polysaccharides. Such a preparation was also suitable for accurate qualitative and quantitative evaluation of the N-glycan content by mass spectrometry. Combining these approaches allows the profiling to be carried out from as low as 500 mg of fresh leaf material. We also demonstrated that collision-induced dissociation (CID) mass spectrometry in negative mode of N-glycans harboring α(1,3)- or α(1,6)-fucose residue on the proximal GlcNAc leads to specific fragmentation patterns, thereby allowing the discrimination of plant N-glycans from those arising from mammalian contamination.  相似文献   

12.
By the example of fetuin and a blood-group-specific mucin from porcine stomach, we showed that, under conditions of reductive degradation of glycoproteins with LiBH4-LiOH in 70% aqueoustert-butyl alcohol, the reduction and cleavage of amide bonds occur much faster than the simultaneous β-elimination of carbohydrate chainsO-linked with Ser and Thr residues of the peptide chain. The major degradation products containing theO-linked glycans are theO-glycosylated derivatives of 2-aminopropane-1,3-diol and 2-aminobutane-1,3-diol (the products of reduction of glycosylated Ser and Thr) and the glycopeptides containing 2–4 amino acid residues with reducedC-terminal amino acid. Seventeen homogeneousO-glycopeptides were isolated from the fetuin degradation products by ion-exchange and reversed-phase HPLC. Their structures were determined by MALDI-TOF mass spectrometry and by analyses for amino acids, amino alcohols, and carbohydrates. The application of the reaction for characterization ofO-glycans and localization ofO-glycosylation sites inO- andN,O-glycoproteins is discussed. Deceased.  相似文献   

13.
The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34–38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63–69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.  相似文献   

14.
ObjectivesThe interferon (IFN) is known to bridge innate and adaptive immune responses, and to play a critical role particularly against hepatitis B virus (HBV) infection. Defects in IFN signals may result, therefore, in attenuated responses against HBV. Accordingly, polymorphisms in genes coding for immune response effectors may affect the clinical outcome of HBV infection. We analyzed the putative association between IFNL4 rs12979860 polymorphism and the outcome of HBV infection in Moroccan patients.MethodsIn this study, 237 chronic HBV (CHB) patients and 129 spontaneously resolved HBV (SRB) individuals were enrolled and genotyped using a predesigned Taqman allelic discrimination assay.ResultsOur data show a significant increase of HBV DNA loads in patients with IFNL4 rs12979860 CC genotype compared to patients with CT and TT genotypes (p = 0.0008). However, there was no consistent association between IFNL4 rs12979860 polymorphism and the outcome of HBV infection.ConclusionsAlthough IFNL4 rs12979860 polymorphism seems to modulate circulating HBV DNA levels, it is disconnected from chronic disease progression. This observation suggests that the role of rs12979860 in liver disease is restricted to viral control and inactive in the deleterious immune pathology that affects liver tissue. Taken together, our data suggest that rs12979860 CC genotypes could be useful as a predictor of success or failure of IFN-based therapy in chronic HBV-infected patients.  相似文献   

15.
The hepatitis B virus (HBV) envelope proteins bear two determinants of viral entry: a receptor-binding site (RBS) in the pre-S1 domain of the large envelope protein and a conformation-dependent determinant, of unknown function, in the antigenic loop (AGL) of the small, middle, and large envelope proteins. Using an in vitro infection assay consisting of susceptible HepaRG cells and the hepatitis delta virus (HDV) as a surrogate of HBV, we first investigated whether subelements of the pre-S1 determinant (amino acids 2 to 75), i.e., the N-terminal myristoyl anchor, subdomain 2-48 (RBS), and subdomain 49-75, were functionally separable. In transcomplementation experiments, coexpression of two distinct infectivity-deficient pre-S1 mutants at the surface of HDV virions failed to restore infectivity, indicating that the myristoyl anchor, the 2-48 RBS, and the 49-75 sequence, likely cooperate in cis at viral entry. Furthermore, we showed that as much as 52% of total pre-S1 in the HDV envelope could bear infectivity-deficient lesions without affecting entry, indicating that a small number of pre-S1 polypeptides—estimated at three to four per virion—is sufficient for infectivity. We next investigated the AGL activity in the small or large envelope protein background (S- and L-AGL, respectively) and found that lesions in S-AGL were more deleterious to infectivity than in L-AGL, a difference that reflects the relative stoichiometry of the small and large envelope proteins in the viral envelope. Finally, we showed that C147S, an AGL infectivity-deficient substitution, exerted a dominant-negative effect on infectivity, likely reflecting an involvement of C147 in intermolecular disulfide bonds.Hepatitis B virus (HBV) remains a major public health concern worldwide, affecting more than 350 millions of chronically infected individuals. Since the discovery of HBV, substantial information has been gathered on the viral replication cycle, but our understanding of the viral entry mechanism remains limited, and the identity of the receptor(s) for HBV is still unknown (15). HBV displays a very narrow host range, which is likely determined at viral entry by a highly specific interaction between the HBV envelope proteins and receptors at the surface of human hepatocytes. The envelope proteins designated large (L-HBsAg), middle (M-HBsAg), and small (S-HBsAg) are membrane-spanning glycoproteins that differ from each other by the size of their N-terminal ectodomain (21). L-HBsAg contains a N-terminal pre-S1, central pre-S2, and C-terminal S domains. M-HBsAg is shorter than L-HBsAg in lacking pre-S1, whereas S-HBsAg consists of the S domain only (Fig. (Fig.1).1). Envelope protein synthesis occurs at the endoplasmic reticulum (ER) membrane. Empty subviral particles (SVPs) assemble from aggregates at a pre-Golgi membrane and exit the cell through the secretory pathway (36). Assembly of mature HBV virions requires, in addition to S-HBsAg, the presence of L-HBsAg as a matrix protein for nucleocapsid envelopment (6). Recent findings indicate that HBV virions and SVPs follow distinct pathways for budding: the late endosomal multivesicular bodies (MVBs) for HBV virions, and the MVB-independent secretory pathway for SVPs (26, 28, 46). The HBV envelope proteins can also package the hepatitis delta virus (HDV) ribonucleoprotein (RNP), in case of HBV/HDV coinfection (5, 45), leading to the formation of HDV virions. Whether HDV uses the SVP secretion pathway rather than an MVB-dependent route is uncertain.Open in a separate windowFIG. 1.Schematic representation of HBV envelope proteins. The topology of the L-, M-, and S-HBsAg proteins at the viral membrane is represented. The pre-S2 domain of L- and M-HBsAg, and the determinants of viral entry, pre-S1 and AGL, are indicated. The M-HBsAg protein, represented in gray, is dispensable for infectivity. The myristic acid (Myr) linked to the L-HBsAg N terminus is indicated (closed box). Subdomains 2-48 and 49-75 of the pre-S1 infectivity determinant are indicated. Open boxes represent transmembrane regions in the S domain.L-HBsAg, but not M-HBsAg, is crucial to infectivity of both HBV and HDV particles (13, 31, 41, 42). L-HBsAg contains a major infectivity determinant located between amino acid residues 2 and 75 of its N-terminal pre-S1 domain (4, 30), including a myristoyl anchor linked to glycine-2 (1, 8, 18), a putative receptor binding site (RBS) between positions 2 and 48, and a domain of unknown function between amino acids 49 and 75. To date, the most compelling evidence that pre-S1 mediates receptor binding comes from studies demonstrating that myristoylated synthetic peptides specific for the N-terminal 2-to-48 pre-S1 domain can bind to hepatocyte plasma membranes and block infection in vitro (3, 16, 17) and in vivo (37). Beside pre-S1, a second determinant was recently identified in the antigenic loop (AGL) borne by the three HBV envelope proteins (Fig. (Fig.1).1). The AGL participation in viral entry was first established in the HDV model (23) and more recently directly in the HBV model (39). Interestingly, serine substitutions for the AGL cysteine residues, which prove detrimental to the conserved immunodominant “a” determinant, could also block viral entry. Note that the “a” determinant consists in conformational epitopes, which elicit highly neutralizing antibodies (22). Infectivity and the “a” determinant were also lost when virions were treated with membrane-impermeable inhibitors of thiol/disulfide isomerization (2). These findings clearly established a correlation between the AGL cysteine disulfide bonds network, the conformation of the “a” determinant, and infectivity. Hence, the strict conservation of the “a” determinant among all HBV genotypes is related to the AGL function at viral entry. The AGL determinant may operate in association with, or independently of pre-S1, in binding to receptors at the early step of entry and/or in the mechanism of envelope disassembly postentry.In the present study, we investigated the pre-S1 determinant by performing transcomplementation experiments between mutants of 3 pre-S1 subelements: the myristoyl anchor, subdomain 2-48, and subdomain 49-75. We analyzed the activity of the AGL determinant in the S- or L-HBsAg background (S- and L-AGL, respectively), and we examined the effect of introducing increasing amounts of infectivity-deficient pre-S1, or AGL, in the virion''s envelope on infectivity.  相似文献   

16.
Peptides selected to bind to hepatitis B virus (HBV) core protein block interaction with the long viral surface antigen (L-HBsAg) in vitro. High resolution electron cryomicroscopy showed that one such peptide binds at the tips of the spikes of the core protein shell. The peptides contain two basic residues; changing either of two acidic residues at the spike tip to an alanine greatly reduced the binding affinity. Transfection of hepatoma cells with a replication-competent HBV plasmid gave significantly reduced production of virus in the presence of peptide, in a dose-dependent manner. These experiments show that the interaction of L-HBsAg with core particles is critical for HBV assembly, and give proof of principle for its disruption in vivo by small molecules.  相似文献   

17.

Background

The aim of this study was to investigate the correlation between the expression of hepatitis B surface antigen (HBsAg) in human ovary and placenta and the vertical transmission of hepatitis B virus (HBV).

Methodology/Principal Fidnings

Ovarian and placental tissue specimens of pregnant women infected with HBV were collected during cesarean section and immunostained for HBsAg. The sera of the corresponding newborns were tested for HBV markers and HBV DNA. HBsAg was detected in 15 out of 33 (45%) placental tissues and was further detected in capillary endothelial cells in 4 specimens (26%), of which 3 (75%) corresponding infants were infected with HBV in utero. Out of the 33 ovarian tissues, 7 (21%) were positive for HBsAg, of which 2 (28%) showed HBsAg in ovarian follicles and the 2 corresponding infants (100%) had intrauterine HBV infection.

Conclusions/Significance

HBsAg expression in cells of the ovarian follicle or placental capillary endothelium signal a higher risk for intrauterine HBV infection.  相似文献   

18.
The study of protein O-glycosylation is receiving increasing attention in biological, medical, and biopharmaceutical research. Improved techniques are required to allow reproducible and quantitative analysis of O-glycans. An established approach for O-glycan analysis relies on their chemical release in high yield by hydrazinolysis, followed by fluorescent labeling at the reducing terminus and high-performance liquid chromatography (HPLC) profiling. However, an unwanted degradation known as “peeling” often compromises hydrazinolysis for O-glycan analysis. Here we addressed this problem using low-molarity solutions of ethylenediaminetetraacetic acid (EDTA) in hydrazine for O-glycan release. O-linked glycans from a range of different glycoproteins were analyzed, including bovine fetuin, bovine submaxillary gland mucin, and serum immunoglobulin A (IgA). The data for the O-glycans released by hydrazine with anhydrous EDTA or disodium salt dihydrate EDTA show high yields of the native O-glycans compared with the peeled product, resulting in a markedly increased robustness of the O-glycan profiling method. The presented method for O-glycan release demonstrates significant reduction in peeling and reduces the number of sample handling steps prior to release.  相似文献   

19.

Background:

In patients who are hepatitis B virus (HBV) DNA-positive, but HBV surface antigen (HBsAg) -negative, the infection is referred to as occult hepatitis B infection (OBI). Occult HBV infection is harmful when other liver diseases are present, and can aggravate liver damage in in patients with chronic liver diseases. In human immunodeficiency virus (HIV) infection the suppression of viral replication by the immune system might be inactivated, and classical HBV infection in OBI patients may occur. Health care professionals should be aware of OBI in HIV patients. The routine test for HBV infection in Iran is the enzyme-linked immunosorbent assay for the HBV surface antigen (ELISA HBsAg); therefore, the aim of this study was to evaluate the prevalence of OBI in Iranian HIV patients.

Methods:

This cross-sectional study was conducted in 2012 on sera from all the known and accessible HIV patients in Jahrom and Fassa, two cities in southern Iran. All samples were tested for the HBsAg, HBV core antibody (HBcAb). All the results were analyzed using SPSS.

Results:

Of the 91 patients, seven (7.7%) were HBsAg-positive and forty-five (49.5%) were HBcAb-positive. In patients with negative HBsAg (84 patients), 39 (46.4%) were HBcAb positive and 53 (63%) were positive for HBV DNA.

Conclusion:

The prevalence of HBV infection is relatively high in HIV patients, and more accurate tests than those presently in use should be used for diagnosis.Key Words: Hepatitis B, HIV infection, Occult hepatitis  相似文献   

20.
High-throughput quantitative analytical method for plant N-glycan has been developed. All steps, including peptide N-glycosidase (PNGase) A treatment, glycan preparation, and exoglycosidase digestion, were optimized for high-throughput applications using 96-well format procedures and automatic analysis on a DNA sequencer. The glycans of horseradish peroxidase with plant-specific core α(1,3)-fucose can be distinguished by the comparison of the glycan profiles obtained via PNGase A and F treatments. The peaks of the glycans with (91%) and without (1.2%) α(1,3)-fucose could be readily quantified and shown to harbor bisecting β(1,2)-xylose via simultaneous treatment with α(1,3)-mannosidase and β(1,2)-xylosidase. This optimized method was successfully applied to analyze N-glycans of plant-expressed recombinant antibody, which was engineered to contain a minor amount of glycan harboring β(1,2)-xylose. These results indicate that our DNA sequencer-based method provides quantitative information for plant-specific N-glycan analysis in a high-throughput manner, which has not previously been achieved by glycan profiling based on mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号