首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study demonstrated the localization of the T-cell subsets (CD4+ and CD8+) and immunoglobulin (Ig)-containing cells (IgA, IgM, and IgG) in the nasal mucosa and its accessory structures. These lymphoid structures may be compared with nasal-associated lymphoid tissue (NALT) of rats and mice. In the chicken NALT, T-cell subsets were more widely distributed than Ig-containing cells, especially in large lymphoid accumulations restricted to the respiratory mucosa in the nasal cavity and the nasolacrimal duct. These lymphoid accumulations in the mucosa of the nasal cavity and nasolacrimal duct consisted of widely distributed CD8+ cells and deeply aggregated CD4+ cells adjacent to large germinal centers. In these lymphoid accumulations, IgG-containing cells were more frequently observed than IgM- and IgA-containing cells. T-cell subsets, predominantly CD8+ cells were more widely distributed in the duct epithelium of the lateral nasal glands than Ig-containing cells. Moreover, numerous CD8+ cells and a few Ig-containing cells were found in the chicken salivary glands, especially around the orifice of their ducts into the oral cavity. Therefore, it seems likely that the chicken NALT plays an important part in the upper respiratory tract, with a close relationship to the paraocular immune system.  相似文献   

2.
Recent studies indicate that the mechanism of nasopharynx-associated lymphoid tissue (NALT) organogenesis is different from that of other lymphoid tissues. NALT has an important role in the induction of mucosal immune responses, including the generation of T helper 1 and T helper 2 cells, and IgA-committed B cells. Moreover, intranasal immunization can lead to the induction of antigen-specific protective immunity in both the mucosal and systemic immune compartments. Therefore, a greater understanding of the differences between NALT and other organized lymphoid tissues, such as Peyer's patches, should facilitate the development of nasal vaccines.  相似文献   

3.
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection.  相似文献   

4.
Peyer's patches are known as mucosal inductive sites for humoral and cellular immune responses in the gastrointestinal tract. In contrast, functionally equivalent structures in the respiratory tract remain elusive. It has been suggested that nasal-associated lymphoid tissue (NALT) might serve as a mucosal inductive site in the upper respiratory tract. However, typical signs of mucosal inductive sites like development of germinal center reactions after Ag stimulation and isotype switching of naive B cells to IgA production have not been directly demonstrated. Moreover, it is not known whether CTL can be generated in NALT. To address these issues, NALT was structurally and functionally analyzed using a model of intranasal infection of C3H mice with reovirus. FACS and histological analyses revealed development of germinal centers in NALT in parallel with generation and expansion of IgA(+) and IgG2a(+) B cells after intranasal reovirus infection. Reovirus-specific IgA was produced in both the upper respiratory and the gastrointestinal tract, whereas production of reovirus-specific IgG2a was restricted to NALT, submandibular, and mesenteric lymph nodes. Moreover, virus-specific CTL were detected in NALT. Limiting dilution analysis showed a 5- to 6-fold higher precursor CTL frequency in NALT compared with a cervical lymph node. Together these data provide direct evidence that NALT is a mucosal inductive site for humoral and cellular immune responses in the upper respiratory tract.  相似文献   

5.
Because little is known about lymphocyte responses in the nasal mucosa, lymphocyte accumulation in the nasal mucosa, nasal-associated lymphoid tissue (NALT), and cervical lymph nodes (CLN) were determined after primary and heterosubtypic intranasal influenza challenge of mice. T cell accumulation peaked in the nasal mucosa on day 7, but peaked slightly earlier in the CLN (day 5) and later (day 10) in the NALT. Tetrameric staining of nasal mucosal cells revealed a peak accumulation of CD8 T cells specific for either the H-2D(b) influenza nucleoprotein epitope 366-374 (D(b)NP(366)) or the H-2D(b) polymerase 2 protein epitope 224-233 (D(b)PA(224)) at 7 days. By day 13, D(b)PA(224)-specific CD8 T cells were undetectable in the mucosa, whereas D(b)NP(366)-specific CD8 T cells persisted for at least 35 days in the mucosa and spleen. After heterosubtypic virus challenge, the accumulation of CD8 T cells in the nasal mucosa was quicker, more intense, and predominantly D(b)NP(366) specific relative to the primary inoculation. The kinetics and specificity of the CD8 T cell response were similar to those in the CLN, but the responses in the NALT and spleen were again slower and more protracted. These results indicate that similar to what was reported in the lung, D(b)NP(366)-specific CD8 T cells persist in the nasal mucosa after primary influenza infection and predominate in an intensified nasal mucosal response to heterosubtypic challenge. In addition, differences in the kinetics of the CD8 T cell responses in the CLN, NALT, and spleen suggest different roles of these lymphoid tissues in the mucosal response.  相似文献   

6.
The murine nasal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLN) are involved in the generation of local immune responses within the upper respiratory tract (URT). However, their involvement in these responses does not imply the necessity for resistance to URT infections. We surgically removed NALT or CLN to address the necessity of these lymphatic tissues for the development of a local protective immune response after a URT influenza infection. No histological evidence of the re-establishment of either tissue was detected after surgery and the subsequent infection. Removal of NALT did not elicit changes in serum or nasal mucosa-associated influenza-specific Ig levels. However, increases in PR8-specific serum IgG and nasal mucosa-associated IgA were detected after removal of CLN. Recruitment of influenza-specific CD4 T cells into the nasal mucosa was not altered by removal of NALT. The removal of NALT or CLN did not alter the recruitment of influenza-specific CD8 T cells into the URT. However, increased levels of influenza-specific CD8 T cells were observed in the tracheal-bronchial lymph nodes after CLN surgery. The rate of viral clearance from nasal mucosa and lungs was not altered by removal of NALT or CLN. These studies demonstrate that despite the participation of NALT and CLN in the generation of local immunity to influenza infections, neither tissue is essential for the development of protective immunity and viral clearance in URT.  相似文献   

7.
The nasopharyngeal-associated lymphoreticular tissues (NALT) found in humans, rodents, and other mammals, contribute to immunity in the nasal sinuses1-3. The NALT are two parallel bell-shaped structures located in the nasal passages above the hard palate, and are usually considered to be secondary components of the mucosal-associated lymphoid system4-6. Located within the NALT are discrete compartments of B and T lymphocytes interspersed with antigen-presenting dendritic cells4,7,8. These cells are surrounded by an epithelial cell layer intercalated with M-cells that are responsible for antigen retrieval from the mucosal surfaces of the air passages9,10. Naive lymphocytes circulating through the NALT are poised to respond to first encounters with respiratory pathogens7. While NALT disappear in humans by the age of two years, the Waldeyer''s Ring and similarly structured lymphatic organs continue to persist throughout life6. In contrast to humans, mice retain NALT throughout life, thus providing a convenient animal model for the study of immune responses originating within the nasal sinuses11.Cultures of single-cell suspensions of NALT are not practical due to low yields of mononuclear cells. However, NALT biology can be examined by ex vivo culturing of the intact organ, and this method has the additional advantage of maintaining the natural tissue structure. For in vivo studies, genetic knockout models presenting defects limited to NALT are not currently available due to a poor understanding of the developmental pathway. For example, while lymphotoxin-α knockout mice have atrophied NALT, the Peyer''s patches, peripheral lymph nodes, follicular dendritic cells and other lymphoid tissues are also altered in these genetically manipulated mice12,13. As an alternative to gene knockout mice, surgical ablation permanently eliminates NALT from the nasal passage without affecting other tissues. The resulting mouse model has been used to establish relationships between NALT and immune responses to vaccines1,3. Serial collection of serum, saliva, nasal washes and vaginal secretions is necessary for establishing the basis of host responses to vaccination, while immune responses originating directly from NALT can be confirmed by tissue culture. The following procedures outline the surgeries, tissue culture and sample collection necessary to examine local and systemic humoral immune responses to intranasal (IN) vaccination.  相似文献   

8.
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.  相似文献   

9.
The ovine nasal mucosal environment has histological and ultrastructural features that resemble well-known inductive sites of mucosa-associated lymphoid tissue. In the present study, the nasal mucosa was assessed as a potential mucosal tissue site for delivering vaccines to sheep. Sheep were immunized by either injection with the model antigen, Keyhole Limpet Haemocyanin (KLH), and aluminium hydroxide gel (alum) or by aerosol spray with KLH with and without cholera toxin (CT). Sheep immunized by injection with KLH/alum and aerosol spray with KLH/CT induced strong anti-KLH IgG and IgA serum antibody responses as well as specific T cell memory. Anti-KLH IgG1 responses were significantly higher following immunization by injection and no significant differences in anti-KLH IgG2 responses were detected between groups. Sheep immunized with KLH by aerosol spray without CT did not produce serum antibody and T cell memory responses. Antibody-secreting cells were present in the parotid lymph nodes (draining lymph nodes) of sheep immunized with KLH/alum and KLH/CT, but secreted only Ag-specific IgG1, and not IgG2 or IgA. These results suggest that aerosolization of soluble antigen formulations with CT may provide an alternative method of delivering nasal vaccines to sheep and other large animal species, and that further improvements in antigen penetration of nasal tissues may dramatically improve the strength of the immune response.  相似文献   

10.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   

11.
M-cells are specialized cells found in the follicle-associated epithelium of intestinal Peyer's patches of gut-associated lymphoid tissue and in isolated lymphoid follicles, appendix and in mucosal-associated lymphoid tissue sites outside the gastrointestinal tract. In the gastrointestinal tract, M-cells play an important role in transport of antigen from the lumen of the small intestine to mucosal lymphoid tissues, where processing and initiation of immune responses occur. Thus, M-cells act as gateways to the mucosal immune system and this function has been exploited by many invading pathogens. Understanding the mechanism by which M-cells sample antigen will inform the design of oral vaccines with improved efficacy in priming mucosal and systemic immune responses. In this review, the origin and morphology of M-cells, and their role in mucosal immunity and pathogenesis of infections are discussed.  相似文献   

12.
As inductive tissues for the initiation of antigen-specific T and B cell responses, the various mucosa-associated lymphoid tissues (MALT) of the aerodigestive tract, which include gut-associated lymphoid tissue (GALT), nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT), share many histological and immunological characteristics. However, recent advances in our molecular and cellular understanding of immunological development have revealed that the various types of MALT also exhibit different molecular and cellular interactions for their organogenesis. In this review, we delineate the distinctive features of GALT, NALT and BALT and seek to show the role played by those features in the regulation of mucosal tissue organogenesis, the mucosal immune system, and mucosal homeostasis, all in an attempt to provide insights which might lead to a prospective mucosal vaccine.  相似文献   

13.
Prion infection and pathogenesis are dependent on the agent crossing an epithelial barrier to gain access to the recipient nervous system. Several routes of infection have been identified, but the mechanism(s) and timing of in vivo prion transport across an epithelium have not been determined. The hamster model of nasal cavity infection was used to determine the temporal and spatial parameters of prion-infected brain homogenate uptake following inhalation and to test the hypothesis that prions cross the nasal mucosa via M cells. A small drop of infected or uninfected brain homogenate was placed below each nostril, where it was immediately inhaled into the nasal cavity. Regularly spaced tissue sections through the entire extent of the nasal cavity were processed immunohistochemically to identify brain homogenate and the disease-associated isoform of the prion protein (PrPd). Infected or uninfected brain homogenate was identified adhering to M cells, passing between cells of the nasal mucosa, and within lymphatic vessels of the nasal cavity at all time points examined. PrPd was identified within a limited number of M cells 15 to 180 min following inoculation, but not in the adjacent nasal mucosa-associated lymphoid tissue (NALT). While these results support M cell transport of prions, larger amounts of infected brain homogenate were transported paracellularly across the respiratory, olfactory, and follicle-associated epithelia of the nasal cavity. These results indicate that prions can immediately cross the nasal mucosa via multiple routes and quickly enter lymphatics, where they can spread systemically via lymph draining the nasal cavity.  相似文献   

14.
Group A streptococci (GAS) are associated with a variety of mucosal and invasive human infections. Recurrent infections by highly heterologous serotypes indicate that cross-serotype immunity is critical for prevention of GAS infections; however, mechanisms underlying serotype-independent protection are poorly understood. Here we report that intranasal vaccination of mice with Sortase A (SrtA), a conserved cell wall bound protein, reduced colonization of nasal-associated lymphoid tissue (NALT) by heterologous serotypes of GAS. Vaccination significantly increased CD4+ IL-17A+ cells in NALT and depletion of IL-17A by neutralizing antibody prevented GAS clearance from NALT which was dependent on immunization with SrtA. Vaccination also induced high levels of SrtA-specific antibodies; however, immunized, B cell-deficient mice cleared streptococcal challenges as efficiently as wild type mice, indicating that the cross-serotype protection is Th17-biased and antibody-independent. Furthermore, efficient GAS clearance from NALT was associated with a rapid neutrophil influx into NALT of immunized mice. These results suggest that serotype independent immune protection against GAS mucosal infection can be achieved by intranasal vaccination with SrtA and enhanced neutrophil function is critical for anti-GAS defense and might be a target for prevention of GAS infections.  相似文献   

15.
Mucosal immune responses are an early and important line of defense against pathogens. The current understanding of the mucosal immune system allows us to consider the use of nasal immunization for induction of antigen-specific immune responses at the mucosal surface and the systemic compartment. Mucosal adjuvants are key for developing novel mucosal vaccines and represent 1 approach to improving mucosal and systemic immunity. However, few mucosal vaccine adjuvants are currently approved for human use. Neisseria meningitidis B proteoliposome-derived cochleate (AFCo1 - Adjuvant Finlay Cochleate 1) has been demonstrated to be a potent mucosal adjuvant. The present work demonstrates that intranasal immunization of 3 doses of tetanus toxoid (TT) coadministered with AFCo1 in mice promotes high systemic and mucosal responses. The anti-TT IgG serum titers and the mucosal anti-TT IgA in saliva and vaginal wash were significantly higher than TT alone. The analysis of antibody subclasses showed that intranasal administration of AFCo1 + TT induced not only IgG1 but also IgG2a anti-TT antibodies at levels comparable to those obtained with TT vaccine (vax-TET). These data support the fact that AFCo1 is a potent mucosal adjuvant in nasal immunization to a coadministered protein antigen.  相似文献   

16.
Andoh A  Masuda A  Kumazawa Y  Kasajima T 《Cytokine》2002,20(3):107-112
Immunization via the nasal route is effective for inducing not only mucosal immunity but also antibody (Ab) response in serum. Nasal lymphoid tissue (NALT) is important for induction of systemic immunity. It remains controversial which T effector cell response is important for serum Ab response after nasal immunization. We investigated serum Ab responses and NALT structures in interleukin (IL)-4 gene targeted (IL-4(-/-)) and interferon (IFN)-gamma gene targeted (IFN-gamma(-/-)) mice. Mice were immunized via nostrils with ovalbumin (OVA) and cholera toxin as adjuvant and serum Ab titers were measured 1 week after final antigen challenge. OVA-specific IgG titers in sera of IL-4(-/-) mice indicated a Th(1) type response, whereas titers in IFN-gamma(-/-) mice and wild-type mice indicated a Th(2) type response. Enhanced serum Ab responses were observed in IL-4(-/-) mice but not IFN-gamma(-/-) mice. OVA-specific Ab-forming cells were detected in the cervical draining lymph nodes but were rare or absent in and around the NALT of all strains of mice. Numbers of OVA-specific Ab-forming cells in cervical lymph nodes were significantly higher in IL-4(-/-) mice than in wild-type and IFN-gamma(-/-) mice. Germinal centers of lymphoid follicles were present in NALT of IL-4(-/-) and other mice. Immunohistochemistry for B and T cell markers revealed that NALT of all mice had approximately the same cellular compositions. Although the absence of IL-4 had no effect on NALT structure, IL-4 may suppress induction of serum Ab responses by nasal immunization.  相似文献   

17.
Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration.  相似文献   

18.
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.  相似文献   

19.
20.
Nasal vaccination is considered a potent and practical immunization route for the induction of effective immunity to infectious diseases. Successful nasal vaccines require efficient delivery to, and retention of antigens within, nasal mucosa, including both the inductive (e.g., nasopharynx-associated lymphoid tissues) and effector (e.g., turbinate covered with single-layer epithelium) tissues, where antigen-specific immune responses are initiated and executed, respectively. We developed an approach towards successful nasal vaccination by using self-assembled nano-sized hydrogel particles, known as nanogels, which are composed of a cationic type of cholesteryl group-bearing pullulan. Here, we review the merging of nanotechnological and immunological concepts leading to the development of next-generation nasal vaccines, and demonstrate the applicability of novel nanogel-based vaccine for the prevention of infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号