共查询到20条相似文献,搜索用时 11 毫秒
1.
Jared L. Johnson Jon W. Erickson Richard A. Cerione 《The Journal of biological chemistry》2009,284(35):23860-23871
The subcellular localization of the Rho family GTPases is of fundamental importance to their proper functioning in cells. The Rho guanine nucleotide dissociation inhibitor (RhoGDI) plays a key regulatory role by influencing the cellular localization of Rho GTPases and is essential for the transforming activity of oncogenic forms of Cdc42. However, the mechanism by which RhoGDI helps Cdc42 to undergo the transition between a membrane-associated protein and a soluble (cytosolic) species has been poorly understood. Here, we examine how RhoGDI influences the binding of Cdc42 to lipid bilayers. Despite having similar affinities for the signaling-inactive (GDP-bound) and signaling-active (GTP-bound) forms of Cdc42 in solution, we show that when RhoGDI interacts with Cdc42 along the membrane surface, it has a much higher affinity for GDP-bound Cdc42 compared with its GTP-bound counterpart. Interestingly, the rate for the dissociation of Cdc42·RhoGDI complexes from membranes is unaffected by the nucleotide-bound state of Cdc42. Moreover, the membrane release of Cdc42·RhoGDI complexes occurs at a similar rate as the release of Cdc42 alone, with the major effect of RhoGDI being to impede the re-association of Cdc42 with membranes. These findings lead us to propose a new model for how RhoGDI influences the ability of Cdc42 to move between membranes and the cytosol, which highlights the role of the membrane in helping RhoGDI to distinguish between the GDP- and GTP-bound forms of Cdc42 and holds important implications for how it functions as a key regulator of the cellular localization and signaling activities of this GTPase.The Rho family GTPases are a tightly regulated class of signaling proteins that controls a number of important cellular processes. Known most prominently for their ability to remodel the actin cytoskeleton in mammalian cells (1–3), members of this GTPase family have been shown to play essential roles in cell migration, epithelial cell polarization, phagocytosis, and cell cycle progression (4–11). The Rho family member Cdc42 was discovered for its essential role in bud formation in Saccharomyces cerevisiae (12). However, after its identification in higher organisms (13), Cdc42 has been implicated in a diverse array of signaling pathways including those involved in the regulation of cell growth and in the induction of malignant transformation (14). Indeed, point mutations which enable Cdc42 to undergo the spontaneous exchange of GDP for GTP cause NIH3T3 cells to form colonies in soft agar and grow in low serum, two hallmarks of cellular transformation (15). The introduction of activated Cdc42 mutants into nude mice gives rise to tumor formation (16). Moreover, cellular transformation by oncogenic Ras, one of the most commonly mutated proteins in human cancers, requires the activation of Cdc42 (17).At the molecular level, there are a number of mechanisms that possibly contribute to the roles played by Cdc42 in cell growth control and cellular transformation. These include the ability of Cdc42 to activate the c-Jun NH2-terminal kinase and p38/Mpk2 signaling pathways (18–20) as well as spatially regulate proteins implicated in the establishment of microtubule-dependent cell polarity including glycogen synthase kinase-3β and adenomatous polyposis coli (21), extend the lifetime of epidermal growth factor receptor-signaling activities by sequestering Cbl, a ubiquitin E3 ligase (22), and influence intracellular trafficking events (23, 24). To mediate such a wide range of cellular responses, two parameters must be properly regulated; that is, the activation state of Cdc42 and its subcellular localization. As is the case with other GTPases, the activation of Cdc42 occurs as an outcome of GDP-GTP exchange, which then enables it to undergo high affinity interactions with effector proteins (25–27). Upon the hydrolysis of GTP to GDP, Cdc42 is converted back to a signaling-inactive state. Two families of proteins work in opposing fashion to regulate the GTP-binding/GTPase cycle of Cdc42. GTPase-activating proteins recognize the GTP-bound form of Cdc42 and accelerate the hydrolysis of GTP to GDP, rendering Cdc42 inactive (28, 29). Guanine nucleotide exchange factors (GEFs)2 stimulate the dissociation of GDP from Cdc42, thereby promoting the formation of its signaling-active, GTP-bound state (29, 30).Of equal importance to its activation status is the spatial regulation of Cdc42. This is highly contingent on the particular cellular membranes that serve as sites of binding and/or recruitment of Cdc42 (31–33). The vast majority of in vitro studies performed on Cdc42 have been carried out in the absence of lipids, which is an important omission considering that virtually all of the physiological functions of Cdc42 occur on a membrane surface (34). Cdc42, along with most other Rho family GTPases, undergoes a series of carboxyl-terminal modifications which result in the covalent attachment of a 20-carbon geranylgeranyl lipid anchor (35–37). Directly preceding this lipid tail is a sequence of basic residues that further stabilizes the association of Cdc42 with the membrane surface (31, 33, 38). A ubiquitously expressed 22-kDa protein called Rho guanine nucleotide dissociation inhibitor (RhoGDI) was found to form a soluble (cytosolic) complex with Cdc42 and other Rho GTPases and to apparently promote their release from membranes (39, 40). RhoGDI was originally discovered and named for its ability to block the GEF- and EDTA-stimulated nucleotide exchange activity of Rho family GTPases (39, 41, 42) and then subsequently shown to inhibit the GTP-hydrolytic activity of Cdc42 (43) and to be capable of interacting with the GDP- and GTP-bound forms of Cdc42 in solution with equal affinity (44). The x-ray crystal structure of a complex between RhoGDI and Cdc42-GDP revealed two types of binding interactions (45). An amino-terminal regulatory arm of RhoGDI was shown to form a helix-loop-helix motif that binds to both of the switch domains of Cdc42, leading to the inhibition of GTP hydrolysis and GDP dissociation (45, 46). The carboxyl-terminal two-thirds of RhoGDI assumes an immunoglobulin-like domain, forming a hydrophobic pocket that in effect provides a membrane substitute for the geranylgeranyl moiety of Cdc42. After release from membranes, the lipid anchor of Cdc42 binds in the hydrophobic pocket of RhoGDI, thereby helping to maintain Cdc42 in solution (45–47).Prior work from our laboratory has demonstrated an essential role for RhoGDI in Cdc42-mediated cellular transformation. Based on the x-ray crystal structure for the Cdc42·RhoGDI complex, Arg-66 of Cdc42 makes multiple contacts with RhoGDI. When this residue was changed to alanine, Cdc42 was unable to bind to RhoGDI but was still capable of interacting with its other regulatory and effector proteins. Interestingly, when the R66A mutant of Cdc42 was examined in the constitutively active Cdc42(F28L) background, the resulting Cdc42 double mutant was no longer able to transform cells (48). Knocking down RhoGDI by small interfering RNA also blocked transformation by Cdc42. These findings highlighted a key role for RhoGDI in the ability of Cdc42 to stimulate signaling pathways of importance to cellular transformation, presumably by influencing the membrane association of Cdc42 and ensuring its proper cellular localization.In the present study we have set out to better understand how RhoGDI regulates the signaling functions of Cdc42 and, in particular, how RhoGDI affects the association of Cdc42 with membranes. We show how the membrane plays a previously unappreciated role in allowing RhoGDI to distinguish between the signaling-inactive (GDP-bound) and signaling-active (GTP-bound) forms of Cdc42. By assaying the binding of Cdc42 to insect cell membranes and compositionally defined liposomes through different approaches including a sensitive, real-time fluorescence resonance energy transfer (FRET) readout, we have been able to establish how RhoGDI influences the ability of Cdc42 to transition between a membrane-bound and soluble species. This has led us to propose a new mechanism describing how RhoGDI performs its important regulatory function. 相似文献
2.
In the past decade, research has demonstrated that estrogens role in physiology and development is far more complicated than previously assumed. Among these discoveries, there has been an increased recognition of the impact estrogen has in neurodevelopment, central nervous system physiology, and neuropathophysiology. These observations have led many researchers to consider using estrogen pharmacotherapeutically, at physiologic or supraphysiologic doses, for a variety of injury and toxicity models. In this short review, the effects of estrogen as an anti-apoptotic agent, as an anti-oxidant, and as an anti-inflammatory agent are discussed. Finally, the possibility of using estrogen as a neuroprotectant in neurotrauma is addressed.Special issue dedicated to Dr. Lawrence F. Eng. 相似文献
3.
4.
S. D. Woods R. D. Skinner A. M. Ricca A. T. Brown J. D. Lowery M. J. Borrelli J. O. Lay W. C. Culp 《Molecular neurobiology》2013,48(2):363-367
Dodecafluoropentane emulsion (DDFPe) in 250 nm nanodroplets seems to swell modestly to accept and carry large amounts of oxygen in the body at >29 °C. Small particle size allows oxygen delivery even into hypoxic tissue unreachable by erythrocytes. Using permanent cerebral embolic occlusion in rabbits, we assessed DDFPe dose response as a neuroprotectant at 7 and 24 h post-embolization without lysis of arterial obstructions and investigated blood pharmacokinetics. New Zealand White rabbits (N?=?56) received cerebral angiography and embolic spheres (diameter?=?700–900 μm) occluded middle and/or anterior cerebral arteries. Intravenous DDFPe dosing (2 %?w/v emulsion) began at 60 min and repeated every 90 min until sacrifice at 7 or 24 h post-embolization. Seven-hour groups: (1) control (embolized without treatment, N?=?6), and DDFPe treatment: (2) 0.1 ml/kg (N?=?7), (3) 0.3 ml/kg (N?=?9), (4) 0.6 ml/kg (N?=?8). Twenty-four-hour groups: (5) control (N?=?16), and DDFPe treatment: (6) 0.1 ml/kg (N?=?10). Infarcts as percent of total brain volume were determined using vital stains on brain sections. Other alert normal rabbits (N?=?8) received IV doses followed by rapid arterial blood sampling and GC-MS analysis. Percent infarct volume means significantly decreased for all DDFPe-treated groups compared with controls, p?=?<0.004 to <0.03. Blood DDFP (gas) half-life was 1.45?±?0.17 min with R?=?0.958. Mean blood clearance was 78.5?±?24.9 ml/min/kg (mean?±?SE). Intravenous DDFPe decreases ischemic stroke infarct volumes. Blood half-life values are very short. The much longer therapeutic effect, >90 min, suggests multiple compartments. Lowest effective dose and maximum effective therapy duration are not yet defined. Rapid development is warranted. 相似文献
5.
6.
目的:利用ELISA技术研发一种灵敏、快速检测人血清中脑红蛋白(Ngb)含量的检测试剂盒,并探讨其在正常人血清样本检测中的应用。方法:采用热诱导的原核表达体系获得重组人源脑红蛋白(rhNgb),通过凝胶过滤和阴离子交换层析等制备rhNgb纯品;将适量rhNgb纯品免疫动物获得抗rhNgb单克隆抗体和多克隆抗体;用双抗体夹心ELISA技术制备rhNgb-ELISA检测试剂盒;用该试剂盒对410例正常人血清中Ngb的含量进行检测,其中包括1.5岁以下婴儿血清55例、19~70岁成人血清355例。结果:用制备的rhNgb-ELISA试剂盒检测发现Ngb在正常人血清中的分布与年龄存在明显的相关性,表现为"两头高、中间低"的趋势,婴儿和老年人血清中Ngb的含量分别为1.6708±0.4945和2.1962±0.6703μmol/L,而中年人血清中Ngb的含量为0.3622±0.0716μmol/L。结论:采用双抗夹心ELISA技术并结合严格的质量控制,研发了高效灵敏的rhNgb-ELISA检测试剂盒,并初步获得了正常人血清中Ngb的含量分布情况,为临床缺血及缺氧性脑损伤等相关疾病的辅助诊断治疗提供了参考信息。 相似文献
7.
Abdel Moneim AE 《Biological trace element research》2012,148(3):363-370
Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects. 相似文献
8.
Chitosan, a natural polysaccharide comprising copolymers of glucosamine and N-acetylglucosamine, has been shown to have anti-obesity properties. Two experiments (Exp. 1 and Exp. 2) were performed to determine the role of chitosan on dietary intake, body weight gain, and fat deposition in a pig model, as well as identifying potential mechanisms underlying the anti-obesity effect of chitosan. In Exp. 1, the nutrient digestibility experiment, 16 pigs (n = 4/treatment) were randomly allocated to one of four dietary treatments as follows: 1) basal diet; 2) basal diet plus 300 ppm chitosan; 3) basal diet plus 600 ppm chitosan; 4) basal diet plus 1200 ppm chitosan. The main observation was that crude fat digestibility was lower in the 1200 ppm chitosan group when compared with the control group (P<0.05). In Exp. 2, a total of 80 pigs (n = 20/treatment) were offered identical dietary treatments to that offered to animals in Exp. 1. Blood samples were collected on day 0, day 35 and at the end of the experiment (day 57). Animals offered diets containing 1200 ppm chitosan had a lower daily dietary intake (P<0.001) and body weight gain (P<0.001) from day 35 to 57 when compared with all the other treatment groups. Animals offered diets containing 1200 ppm chitosan had a significantly lower final body weight (P<0.01) when compared with all the other treatment groups. The decreased dietary intake observed in the 1200 ppm chitosan group was associated with increased serum leptin concentrations (P<0.001) and a decrease in serum C-reactive protein (CRP) concentrations (P<0.05). In conclusion, the results of this study highlight novel endocrine mechanisms involving the modulation of serum leptin and CRP concentrations by which chitosan exhibits anti-obesity properties in vivo. 相似文献
9.
Zhong Guo Xiaomin Hou Roger S. Goody Aymelt Itzen 《The Journal of biological chemistry》2013,288(45):32466-32474
Small G-proteins of the Ras superfamily control the temporal and spatial coordination of intracellular signaling networks by acting as molecular on/off switches. Guanine nucleotide exchange factors (GEFs) regulate the activation of these G-proteins through catalytic replacement of GDP by GTP. During nucleotide exchange, three distinct substrate·enzyme complexes occur: a ternary complex with GDP at the start of the reaction (G-protein·GEF·GDP), an intermediary nucleotide-free binary complex (G-protein·GEF), and a ternary GTP complex after productive G-protein activation (G-protein·GEF·GTP). Here, we show structural snapshots of the full nucleotide exchange reaction sequence together with the G-protein substrates and products using Rabin8/GRAB (GEF) and Rab8 (G-protein) as a model system. Together with a thorough enzymatic characterization, our data provide a detailed view into the mechanism of Rabin8/GRAB-mediated nucleotide exchange. 相似文献
10.
Takahide Matsui Kenta Noguchi Mitsunori Fukuda 《The Journal of biological chemistry》2014,289(20):13986-13995
Small GTPase Rab12 regulates mTORC1 (mammalian target of rapamycin complex 1) activity and autophagy through controlling PAT4 (proton/amino acid transporter 4) trafficking from recycling endosomes to lysosomes, where PAT4 is degraded. However, the precise regulatory mechanism of the Rab12-mediated membrane trafficking pathway remained to be determined because a physiological Rab12-GEF (guanine nucleotide exchange factor) had yet to be identified. In this study we performed functional analyses of Dennd3, which has recently been shown to possess a GEF activity toward Rab12 in vitro. The results showed that knockdown of Dennd3 in mouse embryonic fibroblast cells caused an increase in the amount of PAT4 protein, the same as Rab12 knockdown did, and knockdown of Dennd3 and overexpression of Dennd3 were found to result in an increase and a decrease, respectively, in the intracellular amino acid concentration. Dennd3 overexpression was also found to reduce mTORC1 activity and promoted autophagy in a Rab12-dependent manner. Unexpectedly, however, Dennd3 knockdown had no effect on mTORC1 activity or autophagy despite increasing the intracellular amino acid concentration. Further study showed that Dennd3 knockdown reduced Akt activity, and the reduction in Akt activity is likely to have canceled out amino acid-induced mTORC1 activation through PAT4. These findings indicated that Dennd3 not only functions as a Rab12-GEF but also modulates Akt signaling in mouse embryonic fibroblast cells. 相似文献
11.
The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue. 相似文献
12.
Daniela Giordano Ignacio Boron Stefania Abbruzzetti Wendy Van Leuven Francesco P. Nicoletti Flavio Forti Stefano Bruno C-H. Christina Cheng Luc Moens Guido di Prisco Alejandro D. Nadra Dar��o Estrin Giulietta Smulevich Sylvia Dewilde Cristiano Viappiani Cinzia Verde 《PloS one》2012,7(12)
The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe2+ form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins.Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms. 相似文献
13.
Kallikreins-related peptidases (KLKs) are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI). Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink)5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5. 相似文献
14.
15.
热休克蛋白90(Hsp90)通过对几百种蛋白质底物(客户蛋白质)进行合理的折叠、成熟其构象并且激活,在肿瘤细胞的生长和繁殖中发挥重要作用.因此,Hsp90成为非常有吸引力、有前途的抗肿瘤药物靶点,并且超过20种抑制剂已经进入临床实验阶段.我们在这里设计并合成了一个小分子抑制剂:FS36.收集了Hsp90N-FS36复合物晶体结构的X射线衍射实验数据.高分辨率X射线晶体结构表明,FS36在ATP结合位点上与Hsp90N相互作用,并且FS36可能替代核苷酸与Hsp90N结合.FS36和Hsp90N的复合物晶体结构和相互作用为后期设计和优化新型抗肿瘤药物奠定基础. 相似文献
16.
The Ras-related GTPases are small, 20- to 25-kDa proteins which cycle between an inactive GDP-bound form and an active GTP-bound state. The Ras superfamily includes the Ras, Rho, Ran, Arf, and Rab/YPT1 families, each of which controls distinct cellular functions. The crystal structures of Ras, Rac, Arf, and Ran reveal a nearly superimposible structure surrounding the GTP-binding pocket, and it is generally presumed that the Rab/YPT1 family shares this core structure. The Ras, Rac, Ran, Arf, and Rab/YPT1 families are activated by interaction with family-specific guanine nucleotide exchange factors (GEFs). The structural determinants of GTPases required for interaction with family-specific GEFs have begun to emerge. We sought to determine the sites on YPT1 which interact with GEFs. We found that mutations of YPT1 at position 42, 43, or 49 (effector loop; switch I), position 69, 71, 73, or 75 (switch II), and position 107, 109, or 115 (alpha-helix 3–loop 7 [α3-L7]) are intragenic suppressors of dominant interfering YPT1 mutant N22 (YPT1-N22), suggesting these mutations prevent YPT1-N22 from binding to and sequestering an endogenous GEF. Mutations at these positions prevent interaction with the DSS4 GEF in vitro. Mutations in the switch II and α3-L7 regions do not prevent downstream signaling in yeast when combined with a GTPase-defective (activating) mutation. Together, these results show that the YPT1 GTPase interacts with GEFs in a manner reminiscent of that for Ras and Arf in that these GTPases use divergent sequences corresponding to the switch I and II regions and α3-L7 of Ras to interact with family-specific GEFs. This finding suggests that GTPases of the Ras superfamily each may share common features of GEF-mediated guanine nucleotide exchange even though the GEFs for each of the Ras subfamilies appear evolutionarily unrelated.The small GTPases of the Ras superfamily are involved in regulating many intracellular processes, including cell growth and division, cell morphology and movement, vesicular transport, and nuclear events (4, 40, 41). These proteins, which act as molecular switches to control various functions in the cell, are in the active, or “on,” state when bound to GTP and the inactive, or “off,” state when bound to GDP. The immediate control of these GTPase-mediated events resides in the proteins which regulate their GTP- or GDP-binding status. Two classes of regulatory proteins have been identified: the guanine nucleotide exchange factors (GEFs), whose physiological function is to convert GTPases from a GDP-bound state to a GTP-bound state, and the GTPase-activating proteins (GAPs), which turn off the GTPases by activating an intrinsic GTPase activity (3, 42, 44). The GEFs stimulate guanine nucleotide release to yield a GEF–apo-GTPase reaction intermediate and, in part because the GTP concentration in cells is higher than that of GDP, the formation of active GTP-bound GTPase is favored (61).Most of our understanding of the physical interaction of these regulatory molecules with the small GTPases is based on studies of the Ras protein (3, 42–44). For example, it is known that Ras GAPs bind to the effector loop of Ras (3, 42–44). The Ras effector loop, comprising residues 30 to 45, also interacts with the known downstream targets of Ras (42–44, 79).Numerous groups have contributed to the effort to identify Ras residues which are involved in interactions with GEFs. Residues 62 to 75 in the switch II region of H-ras were found to be involved, as were residues 103 and 105 in the alpha-helix 3–loop 7 (α3-L7) region (16, 38, 49, 57, 59, 60, 68, 69, 73). The effector loop (switch I region) of Ras was also implicated in direct interactions with GEFs (5, 38, 47, 79). The switch I, switch II, and α3-L7 regions of H-ras are found adjacent to each other on the surface of the molecule, as would be expected for a surface domain involved in GEF binding (see Fig. Fig.7)7) (36). The recently described crystal structure of H-ras complexed with Sos demonstrates that each of these three regions is indeed at the interface of the Ras-Sos complex (5).Open in a separate windowFIG. 7Diagram showing the structure of H-ras bound to GDP. The effector loop (residues 35 to 42) (magenta), switch II region (residues 62 to 76) (cyan blue), and α3-L7 region (residues 101 to 109) (green) of Ras are on the surface of the molecule and are located next to each other. The remaining H-ras structure is shown in yellow. GDP is shown in red. Two orientations of the molecules are presented: A and B show one orientation, and C and D show the other orientation. The locations of several amino acid residues of H-ras in regions involved in binding GEFs are indicated. The switch II region and the α3-L7 region are presented as either stick models (A and C) or space-filling models (B and D).Ras GEFs exhibit a modest preference for binding GDP-bound forms of Ras, whereas Ras GAPs preferentially bind GTP-bound forms (28, 37, 45, 49, 74). Thus, the GEFs and GAPs which affect the nucleotide-binding status of Ras preferentially bind their respective substrates rather than their products. The high affinities for substrates likely reflect structural differences between the two nucleotide-bound forms of Ras. Significantly, the switch I and switch II regions of H-ras, known to have altered structures when bound to either GDP or GTP, fall within the regions implicated in interactions with GEFs and GAPs (66).Recently, the crystal structure of the Sec7 domain of human Arno, a GEF for the Arf GTPase, and an analysis of the interaction sites of these two proteins have been reported (48). The analysis revealed that Arf interacts with its exchange factor in a manner reminiscent of the Ras interaction with its GEFs. Arf appears to use three noncontiguous segments of its polypeptide to interact with Sec7. Importantly, these three regions of the Arf protein are analogous to those used by Ras to interact with its GEFs. The switch I region (effector loop) and switch II region of Arf and Ras interact with their GEFs (5, 38, 47, 48, 79). Also, Ras residues 103 to 105 in the α3-L7 region and the corresponding residues of Arf (residues 113 to 115) appear to bind GEFs (5, 24, 48, 68, 69). While the GEF-binding sequences of Arf and Ras are at analogous positions in the GTPases, GEF-binding sequences of Ras do not show homology with the Arf sequences. The finding that these two distantly related GTPases use analogous regions to interact with their GEFs raises several questions relating to other subclasses of GTPases. For example, do the Rho and Rab/YPT1 families of GTPases interact with their GEFs by using domains analogous to those used by Ras and Arf? Do the different families of GEF use a similar mechanism for catalyzing guanine nucleotide exchange on small GTPases?We undertook the present study to ask whether other small GTPases use the regions corresponding to the GEF-binding domain of H-ras to interact with their cognate GEFs. For this study, we chose the yeast YPT1 protein, which is a member of the Rab family of small GTPases (22, 29, 70). This family of proteins is involved in regulating vesicular transport (54, 55). Previously we used a yeast genetic screen to identify Ras residues which were involved in binding to Ras GEFs (49). This screen uses both a dominant interfering mutant and a constitutively active mutant of Ras. Here we created analogous YPT1 mutants and demonstrated that they could be used in a similar genetic screen. We demonstrated that the mechanism of dominant interference of YPT1 mutant N22 (YPT1-N22) is sequestration of an endogenous essential GEF for YPT1 such that a lethal phenotype occurs because endogenous YPT1 cannot be activated. Using both site-directed and random mutagenesis procedures, we identified a series of intragenic suppressors of YPT1-N22, among which we predicted would be mutants which fail to sequester essential GEFs for YPT1 due to the loss of a complete GEF-binding domain.Among the intragenic suppressor mutations, we identified 10 residues, at positions 42, 43, 49, 69, 71, 73, 75, 107, 109, and 115, which were involved in in vitro binding to DSS4, a GEF which can stimulate nucleotide exchange on YPT1 in vitro (10, 50). The positions of these residues correspond to the switch I, switch II, and α3-L7 regions of Ras, the same regions found to be important for Ras interaction with GEFs.Our findings suggest that the interaction of Ras with its specific GEFs may prove to be a useful model for analyzing the structural basis underlying the interaction of other small GTPases with their cognate GEFs. Further, our findings, together with an analysis of the interactions of Ras and Arf GTPases with their GEFs, indicate that small GTPases of the Ras superfamily use similar regions for interactions with GEFs, suggesting a similar catalytic mechanism of guanine nucleotide exchange for all small GTPases. 相似文献
17.
18.
Coupling of the Human Y2 Receptor for Neuropeptide Y and Peptide YY to Guanine Nucleotide Inhibitory Proteins in Permeabilized SMS-KAN Cells 总被引:2,自引:0,他引:2
Christian Freitag Anja B. Svendsen Nya Feldthus Kristine Løssl Søren P. Sheikh 《Journal of neurochemistry》1995,64(2):643-650
Abstract: Using guanine nucleotides, pertussis toxin, and specific antisera against the COOH-terminals of the α-subunits of Gi1/2 , Gi3 , and Go , the binding and biological response of the Y2 receptor (Y2R) for peptide YY (PYY) was probed in SMS-KAN neuroblastoma cells. The specific binding of radiolabeled PYY exhibited a single apparent dissociation constant, K D = 76 p M for intact cells and K D = 906 p M for permeabilized cells. However, other data suggested existence of multiple receptor affinity states. A shift in K D and a decrease in apparent number of binding sites ( B max ) was observed in permeabilized cells when incubated with guanine nucleotides. By contrast, in membrane preparations guanine nucleotides induced only a decrease in B max . In intact cells, agonist exposure inhibited the intracellular accumulation of forskolin-stimulated cyclic AMP by 80% (IC50 = 420 n M ) compared with 94% inhibition (IC50 = 380 n M ) in permeabilized cells. In permeabilized cells, preincubation with antisera against αi1/2 and αi3 blocked the functional response of PYY, with anti-αi3 being the most potent; whereas anti-αo failed to affect the cyclic AMP levels. These results suggest that permeabilized SMS-KAN cells serve as a good model system for analysis of Y2R binding kinetics and functional response and that the Y2R interacts directly with several different Gi s (but not Go ). 相似文献
19.
20.
Anita Sidhu Kazuhiro Kimura Misook Uh Beatrix H. White Shutish Patel 《Journal of neurochemistry》1998,70(6):2459-2467
Abstract: We have demonstrated previously that D1 dopamine receptors are coupled to both Gs α and Go α. We examine here the coupling between human D5 dopamine receptors and G proteins in transfected rat pituitary GH4 C1 cells. Similar to D1 receptors, cholera toxin treatment of cells reduced, but did not abolish, D5 agonist high-affinity binding sites, indicating D5 receptors couple to both Gs α and cholera toxin-insensitive G proteins. The interaction between D5 receptors and Gs α was confirmed by immunoprecipitation studies and by the ability of D5 receptors to stimulate adenylyl cyclase. Unlike D1 receptors, D5 receptors did not display any pertussis toxin-sensitive G-protein coupling to Go α or Gi α. D5 receptors were also not coupled to Gq α and were unable to mediate phosphatidylinositol metabolism. Instead, D5 sites appeared to be coupled to an AIF− 4 -sensitive, N -ethylmaleimide-resistant G protein. Anti-Gz α caused immunoprecipitation of 24.2 ± 5.2% of G protein-associated D5 receptors, indicating coupling between D5 and Gz α. The coupling to Gz α was specific for D5 receptors, because similar associations were not detected between D1 receptors and Gz α. 相似文献