首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a large family in which a combination of chronic mucocutaneous candidiasis (fungal infections of the skin, nails, and mucous membranes) and thyroid disease segregate as an autosomal dominant trait with reduced penetrance. The family includes (a) four members with both candidiasis and thyroid disease, (b) five members, including one pair of phenotype-concordant MZ twins, with candidiasis only, and (c) three members with thyroid disease only. A whole-genome scan using DNA samples from 20 members of the family identified a candidate linkage region on chromosome 2p. By sampling additional individuals and genotyping supplementary markers, we established linkage to a region of approximately 15 cM bounded by D2S367 and D2S2240 and including seven adjacent markers consistent with linkage. With a penetrance estimate of.8, which was based on pedigree and affected status, the peak two-point LOD score was 3.70 with marker D2S2328, and the peak three-point LOD score was 3.82. This is the first linkage assignment of a dominant locus for mucocutaneous candidiasis.  相似文献   

2.
Previous reports of an association between constitutional chromosome 18 abnormalities and low levels of IgA suggested that this chromosome contains a susceptibility locus for selective IgA deficiency (IgAD), the most frequent Ig deficiency in humans. IgAD is genetically related to common variable immunodeficiency (CVID), characterized by a lack of additional isotypes. Our previous linkage analysis of 83 multiple-case IgAD/CVID families containing 449 informative pedigree members showed a significantly increased allele sharing in the chromosome region 6p21 consistent with allelic associations in family-based and case-control studies and provided the evidence for a predisposing locus, termed IGAD1, in the proximal part of the MHC. We have typed the same family material at 17 chromosome 18 marker loci with the average intermarker distance of 7 cM. A total of 7633 genotypes were analyzed in a nonparametric linkage analysis, but none of the marker loci exhibited a significantly increased allele sharing in affected family members. In addition, reverse painting and deletion mapping of a panel of constitutional chromosome 18 deletions/translocations showed the presence of IgA-deficient and IgA-proficient patients with the same abnormality and did not reveal a region commonly deleted. The linkage analysis of chromosome 8 and 21 regions involved in reciprocal translocations t(8;18) and t(18;21), which were identified in two patients lacking IgA, did not disclose a significant allele sharing. Although these results do not exclude the presence of a minor predisposing locus on this chromosome, such a putative locus would confer a population risk of developing IgAD/CVID much lower than IGAD1.  相似文献   

3.
OBJECTIVES: The Admixture test is routinely used in linkage analysis to take account of genetic heterogeneity, and yields an estimate of the proportion of families (alpha) segregating the linked disease gene. In complex disorders, the assumptions of the Admixture test are violated. We therefore explore how the estimate of alpha relates to the true proportion of linked families with a complex disorder in a population or dataset. METHODS: We simulated a two-locus heterogeneity model and varied genetic parameters, ascertainment scheme and phenocopy frequency. RESULTS: In this model, alpha is almost always overestimated, by as little as 5% to as much as 60%. The bias is largely attributable to (1). intrafamilial heterogeneity arising from ascertainment of families with many affected members or from analysis of dense pedigrees; (2). low informativeness, which occurs in the presence of reduced penetrance; and (3). differences in the evidence for linkage in linked and unlinked families. This bias is also affected by the analysis phenocopy frequency, but only if the linked locus is dominant and the unlinked locus is recessive. CONCLUSIONS: We conclude that, in complex diseases, the Admixture test has greater value in detecting linkage than in estimating the proportion of linked families in a dataset.  相似文献   

4.
Paget disease of bone (PDB) is characterized by increased osteoclast activity and localized abnormal bone remodeling. PDB has a significant genetic component, with evidence of linkage to chromosomes 6p21.3 (PDB1) and 18q21-22 (PDB2) in some pedigrees. There is evidence of genetic heterogeneity, with other pedigrees showing negative linkage to these regions. TNFRSF11A, a gene that is essential for osteoclast formation and that encodes receptor activator of nuclear factor-kappa B (RANK), has been mapped to the PDB2 region. TNFRSF11A mutations that segregate in pedigrees with either familial expansile osteolysis or familial PDB have been identified; however, linkage studies and mutation screening have excluded the involvement of RANK in the majority of patients with PDB. We have excluded linkage, both to PDB1 and to PDB2, in a large multigenerational pedigree with multiple family members affected by PDB. We have conducted a genomewide scan of this pedigree, followed by fine mapping and multipoint analysis in regions of interest. The peak two-point LOD scores from the genomewide scan were 2.75, at D7S507, and 1.76, at D18S70. Multipoint and haplotype analysis of markers flanking D7S507 did not support linkage to this region. Haplotype analysis of markers flanking D18S70 demonstrated a haplotype segregating with PDB in a large subpedigree. This subpedigree had a significantly lower age at diagnosis than the rest of the pedigree (51.2+/-8.5 vs. 64.2+/-9.7 years; P=.0012). Linkage analysis of this subpedigree demonstrated a peak two-point LOD score of 4.23, at marker D18S1390 (straight theta=0), and a peak multipoint LOD score of 4.71, at marker D18S70. Our data are consistent with genetic heterogeneity within the pedigree and indicate that 18q23 harbors a novel susceptibility gene for PDB.  相似文献   

5.
Benign adult familial myoclonic epilepsy (BAFME) has been mapped to chromosome 8q23.3–q24.1, 2p11.1–q12.1, 5p15.31–p15.1, and 3q26.32–3q28, in Japanese, Italian, Thai, and French pedigrees, respectively. Recently, we investigated a Chinese BAFME family. Clinical and electrophysiological studies revealed that nine individuals were affected with BAFME. We aimed to establish the causative gene for this pedigree. We genotyped 17 microsatellite markers covering the four previously identified chromosome regions and performed linkage analyses. The linkage analysis data showed that the LOD score was 2.80 for D5S486 at no recombination. This suggested linkage to 5p15.31–p15.1 and excluded linkage to the other three loci (LOD score <0 at no recombination). Our study suggests that the causative gene responsible for BAFME in the Chinese pedigree may be located on chromosome 5p15.31–p15.1.  相似文献   

6.
The association between trisomy 21 and a high incidence of atrioventricular canal defects (AVCDs) indicates that a locus on chromosome 21 is involved in this congenital heart defect. We have investigated whether a genetic locus on chromosome 21 is also involved in familial nonsyndromic AVCDs. Short tandem repeat polymorphisms (STRPs) from chromosome 21 were used for linkage analysis of a family having multiple members affected with AVCDs. In this family, the gene for AVCDs is transmitted as an autosomal dominant with incomplete penetrance. The affected family members are nonsyndromic and have normal karyotypes. Two-point and multipoint linkage analyses produced significantly negative LOD scores for all informative markers. A comparison of the overlapping exclusion distances obtained for each marker at LOD equal -2.0 with the 1000:1 consensus genetic map of the markers, excludes chromosome 21 as the genetic location for AVCDs in this family. The exclusion of chromosome 21 indicates that another gene, not located on chromosome 21, is involved in atrioventricular canal defect formation.  相似文献   

7.
为确定一个X染色体显性遗传先天性眼球震颤家系的致病基因与X染色体的连锁关系, 选用X染色体上的DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192和DXS1232共8个微卫星DNA标记对该家系进行基因扫描与基因分型,并利用LINKAGE等软件包对基因分型结果进行分析,探讨该家系致病基因与X染色体的连锁关系。 两点连锁分析时X染色体短臂4个基因座最大LOD值均小于-1,不支持与该家系致病基因连锁; X染色体长臂4个基因座中最大LOD值达到2,提示存在较大的连锁可能性。该家系的致病基因可初步定位于X染色体长臂,且提示Xq26-Xq28区间附近可能是先天性眼球震颤一个共同的致病基因座,但区间范围仍较大,仍须进一步选择合适的微卫星标记进行精确的定位以缩小候选基因的筛查范围。Abstract: To investigate the relationship between X chromosome and obligatory gene of a pedigree with congenital nystagmus,we used the following markers: DXS1214、DXS1068、DXS993、DXS8035、DXS1047、DXS8033、DXS1192 and DXS1232.Genome screening and genotyping were conducted in this pedigree of congenital nystagmus, and linkage analysis by LINKAGE package was used to determine the potential location. The linkage was not found on the Xp ( All LOD score <-1) but on Xq (the maximum LOD score=2). The related gene of this pedigree was located on the long arm of X chromosome. We demonstrate that Xq26-Xq28 is a common locus for CMN. It bring us closer to the identification of a gene responsible for X-linked CMN.  相似文献   

8.
Alzheimer disease (AD) is the most common cause of dementia. We conducted a genome screen of 103 patients with late-onset AD who were ascertained as part of the Genetic Research in Isolated Populations (GRIP) program that is conducted in a recently isolated population from the southwestern area of The Netherlands. All patients and their 170 closely related relatives were genotyped using 402 microsatellite markers. Extensive genealogy information was collected, which resulted in an extremely large and complex pedigree of 4,645 members. The pedigree was split into 35 subpedigrees, to reduce the computational burden of linkage analysis. Simulations aiming to evaluate the effect of pedigree splitting on false-positive probabilities showed that a LOD score of 3.64 corresponds to 5% genomewide type I error. Multipoint analysis revealed four significant and one suggestive linkage peaks. The strongest evidence of linkage was found for chromosome 1q21 (heterogeneity LOD [HLOD]=5.20 at marker D1S498). Approximately 30 cM upstream of this locus, we found another peak at 1q25 (HLOD=4.0 at marker D1S218). These two loci are in a previously established linkage region. We also confirmed the AD locus at 10q22-24 (HLOD=4.15 at marker D10S185). There was significant evidence of linkage of AD to chromosome 3q22-24 (HLOD=4.44 at marker D3S1569). For chromosome 11q24-25, there was suggestive evidence of linkage (HLOD=3.29 at marker D11S1320). We next tested for association between cognitive function and 4,173 single-nucleotide polymorphisms in the linked regions in an independent sample consisting of 197 individuals from the GRIP region. After adjusting for multiple testing, we were able to detect significant associations for cognitive function in four of five AD-linked regions, including the new region on chromosome 3q22-24 and regions 1q25, 10q22-24, and 11q25. With use of cognitive function as an endophenotype of AD, our study indicates the that the RGSL2, RALGPS2, and C1orf49 genes are the potential disease-causing genes at 1q25. Our analysis of chromosome 10q22-24 points to the HTR7, MPHOSPH1, and CYP2C cluster. This is the first genomewide screen that showed significant linkage to chromosome 3q23 markers. For this region, our analysis identified the NMNAT3 and CLSTN2 genes. Our findings confirm linkage to chromosome 11q25. We were unable to confirm SORL1; instead, our analysis points to the OPCML and HNT genes.  相似文献   

9.

Background

Frontotemporal lobar degeneration (FTLD) represents a clinically, pathologically and genetically heterogenous neurodegenerative disorder, often complicated by neurological signs such as motor neuron-related limb weakness, spasticity and paralysis, parkinsonism and gait disturbances. Linkage to chromosome 9p had been reported for pedigrees with the neurodegenerative disorder, frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND). The objective in this study is to identify the genetic locus in a multi-generational Australian family with FTLD-MND.

Methods

Clinical review and standard neuropathological analysis of brain sections from affected pedigree members. Genome-wide scan using microsatellite markers and single nucleotide polymorphism fine mapping. Examination of candidate genes by direct DNA sequencing.

Results

Neuropathological examination revealed cytoplasmic deposition of the TDP-43 protein in three affected individuals. Moreover, we identify a family member with clinical Alzheimer's disease, and FTLD-Ubiquitin neuropathology. Genetic linkage and haplotype analyses, defined a critical region between markers D9S169 and D9S1845 on chromosome 9p21. Screening of all candidate genes within this region did not reveal any novel genetic alterations that co-segregate with disease haplotype, suggesting that one individual carrying a meiotic recombination may represent a phenocopy. Re-analysis of linkage data using the new affection status revealed a maximal two-point LOD score of 3.24 and a multipoint LOD score of 3.41 at marker D9S1817. This provides the highest reported LOD scores from a single FTLD-MND pedigree.

Conclusion

Our reported increase in the minimal disease region should inform other researchers that the chromosome 9 locus may be more telomeric than predicted by published recombination boundaries. Moreover, the existence of a family member with clinical Alzheimer's disease, and who shares the disease haplotype, highlights the possibility that late-onset AD patients in the other linked pedigrees may be mis-classified as sporadic dementia cases.  相似文献   

10.
The purpose of this paper is to report the linkage of a genetic locus (designated "HBM") in the human genome to a phenotype of very high spinal bone density, using a single extended pedigree. We measured spinal bone-mineral density, spinal Z(BMD), and collected blood from 22 members of this kindred. DNA was genotyped on an Applied Biosystems model 377 (ABI PRISM Linkage Mapping Sets; Perkin Elmer Applied Biosystems), by use of fluorescence-based marker sets that included 345 markers. Both two-point and multipoint linkage analyses were performed, by use of affected/unaffected and quantitative-trait models. Spinal Z(BMD) for affected individuals (N = 12) of the kindred was 5.54 +/- 1.40; and for unaffected individuals (N = 16) it was 0.41 +/- 0.81. The trait was present in affected individuals 18-86 years of age, suggesting that HBM influences peak bone mass. The only region of linkage was to a series of markers on chromosome 11 (11q12-13). The highest LOD score (5.21) obtained in two-point analysis, when a quantitative-trait model was used, was at D11S987. Multipoint analysis using a quantitative-trait model confirmed the linkage, with a LOD score of 5.74 near marker D11S987. HBM demonstrates the utility of spinal Z(BMD) as a quantitative bone phenotype that can be used for linkage analysis. Osteoporosis pseudoglioma syndrome also has been mapped to this region of chromosome 11. Identification of the causal gene for both traits will be required for determination of whether a single gene with different alleles that determine a wide range of peak bone densities exists in this region.  相似文献   

11.
We describe a large pedigree of individuals with autosomal dominant atrioventricular septal defect (AVSD). The pedigree includes affected individuals and individuals who have transmitted the defect but are not clinically affected. AVSDs are a rare congenital heart malformation that occurs as only 2.8% of isolated cardiac lesions. They are the predominant heart defect in children with Down syndrome, making chromosome 21 a candidate for genes involved in atrioventricular septal development. We have carried out a linkage study in the pedigree by using 10 simple-sequence polymorphisms from chromosome 21. Multipoint linkage analysis gives lod scores of less than -2 for the region of trisomy 21 associated with heart defects, which excludes a locus within this region as the cause of the defect in this family.  相似文献   

12.
A locus for brachydactyly type A-1 maps to chromosome 2q35-q36   总被引:5,自引:0,他引:5       下载免费PDF全文
Brachydactyly type A-1 (BDA1) was, in 1903, the first recorded example of a human anomaly with Mendelian autosomal dominant inheritance. Two large families, the affected members of which were radiographed, were recruited in the study we describe here. Two-point linkage analysis for pedigree 1 (maximum LOD score [Zmax] 6.59 at recombination fraction [theta] 0.00) and for pedigree 2 (Zmax=5.53 at straight theta=0.00) mapped the locus for BDA1 in the two families to chromosome 2q. Haplotype analysis of pedigree 1 confined the locus for family 1 within an interval of <8.1 cM flanked by markers D2S2248 and D2S360, which was mapped to chromosome 2q35-q36 on the cytogenetic map. Haplotype analysis of pedigree 2 confined the locus for family 2 within an interval of <28. 8 cM flanked by markers GATA30E06 and D2S427, which was localized to chromosome 2q35-q37. The two families had no identical haplotype within the defined region, which suggests that the two families were not related.  相似文献   

13.
Several dog breeds are susceptible to developing primary angle closure glaucoma (PACG), which suggests a genetic basis for the disease. We have identified a four-generation Basset Hound pedigree with characteristic autosomal recessive PACG that closely recapitulates PACG in humans. Our aim is to utilize gene mapping and whole exome sequencing approaches to identify PACG-causing sequence variants in the Basset. Extensive clinical phenotyping of all pedigree members was conducted. SNP-chip genotyping was carried out in 9 affected and 15 unaffected pedigree members. Two-point and multipoint linkage analyses of genome-wide SNP data were performed using Superlink-Online SNP-1.1 and a locus was mapped to chromosome 19q with a maximum LOD score of 3.24. The locus contains 12 Ensemble predicted canine genes and is syntenic to a region on chromosome 2 in the human genome. Using exome-sequencing analysis, a possibly damaging, non-synonymous variant in the gene Nebulin (NEB) was found to segregate with PACG which alters a phylogenetically conserved Lysine residue. The association of this variants with PACG was confirmed in a secondary cohort of unrelated Basset Hounds (p = 3.4 × 10-4, OR = 15.3 for homozygosity). Nebulin, a protein that promotes the contractile function of sarcomeres, was found to be prominently expressed in the ciliary muscles of the anterior segment. Our findings may provide insight into the molecular mechanisms that underlie PACG. The phenotypic similarities of disease presentation in dogs and humans may enable the translation of findings made in this study to patients with PACG.  相似文献   

14.
Frequent loss of heterogeneity in prostate cancer cells and linkage studies of families affected by hereditary prostate cancer (HPC) have implied that the short arm of chromosome 8, specifically 8p22-23, may harbor a prostate-cancer-susceptibility gene. In a recent study, seven potentially important mutations in the macrophage scavenger receptor 1 gene (MSR1), located at 8p22, were observed in families affected with HPC, and an indication of co-segregation between these mutations and prostate cancer was reported. In an attempt to confirm linkage at 8p22-23, we performed linkage analyses in 57 families affected with HPC (ascertained throughout Sweden) by using 13 markers on the short arm of chromosome 8. In the complete set of families, evidence for prostate cancer linkage was observed at 8p22-23, with a peak hold of 1.08 (P=0.03), observed at D8S1731, approximately 1 cM centromeric to the MSR1 gene. At marker D8S1135, the closest marker to MSR1, a hlod of 1.07 (P=0.03) was observed. Evidence of linkage was seen in families with early-onset HPC and in families with a small number of affected individuals. The peak multipoint non-parametric linkage score was 2.01 (P=0.03) at D8S552 in the 14 pedigrees with mean age at onset <65 years, and 2.25 (P=0.01) at D8S1731 in the 36 pedigrees with fewer than five affected family members. Thus, we have confirmed evidence for prostate cancer linkage at 8p22-23. Follow-up studies to evaluate the possible association between prostate cancer and genes in this region, especially the MSR1 gene, are warranted.  相似文献   

15.
Summary We report a large Italian pedigree in which five out of six males are affected by a syndrome, following an X-linked inheritance pattern, characterized by ichthyosis, hypogonadotropic hypogonadism, and anosmia. The concurrence of features of X-linked ichthyosis (XLI) with those of Kallmann syndrome, another disease often inherited as an X-linked trait, prompted us to perform biochemical, cytogenetic, and molecular studies in relation to the short arm of the X chromosome (Xp). Steroid sulphatase (STS) activity was found to be completely deficient in all affected members of the family. Prometaphase chromosome analyses of two obligate heterozygous women and one affected male showed normal karyotypes. Xg blood group antigen analysis and molecular studies employing cloned DNA sequences from the distal segment of the Xp (probes RC8, 782, dic56, and M1A), did not provide evidence for deletions or rearrangements of the X chromosome. The linkage analysis showed no crossovers between the disease, Xg, and DXS 143, the locus defined by probe dic56, thus suggesting the possibility of a linkage between these two markers of the distal segment of Xp and the X-linked ichthyosis, hypogonadism, and anosmia syndrome.  相似文献   

16.
HLA-linked rheumatoid arthritis.   总被引:3,自引:1,他引:2       下载免费PDF全文
Twenty-eight pedigrees were ascertained through pairs of first-degree relatives diagnosed with rheumatoid arthritis (RA). RA was confirmed in 77 pedigree members including probands; the absence of disease was verified in an additional 261 pedigree members. Pedigree members were serologically typed for HLA. We used likelihood analysis to statistically characterize the HLA-linked RA susceptibility locus. The genetic model assumed tight linkage to HLA. The analysis supported the existence of an HLA-linked RA susceptibility locus, estimated the susceptibility allele frequency as 2.16%, and estimated the lifetime penetrance as 41% in male homozygotes and as 48% in female homozygotes. Inheritance was recessive in males and was nearly recessive in females. In addition, the analysis attributed 78% of the variance within genotypes to genetic or environmental effects shared by siblings. The genetic model inferred in this analysis is consistent with previous association, linkage, and familial aggregation studies of RA. The inferred HLA-linked RA susceptibility locus accounts for approximately one-half of familial RA, although it accounts for only approximately one-fifth of the RA in the population. Although other genes may account for the remaining familial RA, a large portion of RA cases may occur sporadically.  相似文献   

17.
Macular Telangiectasia type 2 (MacTel) is a relatively rare macular disease of adult onset presenting with distortions in the visual field and leading to progressive loss of visual acuity. For the purpose of a gene mapping study, several pedigrees were ascertained with multiple affected family members. Seventeen families with a total of 71 individuals (including 45 affected or possibly affected) were recruited at clinical centers in 7 countries under the auspices of the MacTel Project. The disease inheritance was consistent with autosomal dominant segregation with reduced penetrance. Genome-wide linkage analysis was performed, followed by analysis of recombination breakpoints. Linkage analysis identified a single peak with multi-point LOD score of 3.45 on chromosome 1 at 1q41-42 under a dominant model. Recombination mapping defined a minimal candidate region of 15.6 Mb, from 214.32 (rs1579634; 219.96 cM) to 229.92 Mb (rs7542797; 235.07 cM), encompassing the 1q41-42 linkage peak. Sanger sequencing of the top 14 positional candidates genes under the linkage peak revealed no causal variants in these pedigrees.  相似文献   

18.
Huntington disease phenocopy is a familial prion disease   总被引:2,自引:0,他引:2       下载免费PDF全文
Huntington disease (HD) is a common autosomal dominant neurodegenerative disease with early adult-onset motor abnormalities and dementia. Many studies of HD show that huntingtin (CAG)n repeat-expansion length is a sensitive and specific marker for HD. However, there are a significant number of examples of HD in the absence of a huntingtin (CAG)n expansion, suggesting that mutations in other genes can provoke HD-like disorders. The identification of genes responsible for these "phenocopies" may greatly improve the reliability of genetic screens for HD and may provide further insight into neurodegenerative disease. We have examined an HD phenocopy pedigree with linkage to chromosome 20p12 for mutations in the prion protein (PrP) gene (PRNP). This reveals that affected individuals are heterozygous for a 192-nucleotide (nt) insertion within the PrP coding region, which encodes an expanded PrP with eight extra octapeptide repeats. This reveals that this HD phenocopy is, in fact, a familial prion disease and that PrP repeat-expansion mutations can provoke an HD "genocopy." PrP repeat expansions are well characterized and provoke early-onset, slowly progressive atypical prion diseases with an autosomal dominant pattern of inheritance and a remarkable range of clinical features, many of which overlap with those of HD. This observation raises the possibility that an unknown number of HD phenocopies are, in fact, familial prion diseases and argues that clinicians should consider screening for PrP mutations in individuals with HD-like diseases in which the characteristic HD (CAG)n repeat expansions are absent.  相似文献   

19.
Summary As evidenced by a large pedigree with 21 affected members, acrokeratoelastoidosis (AKE) is an autosomal dominant skin disease (10185; McKusick 1978). Linkage with genetic markers already assigned to human chromosomes could help to map the gene for this disease. Therefore 22 markers were investigated in 61 members of the AKE family. Loose linkage is possible between AKE and ACP1, IGKC, and Jk, but the estimated recombination fractions do not reach significant deviations from 0.5. However, since the three marker loci have been previously assigned to chromosome 2, the AKE locus might be assigned tentatively to the same chromosome. Of the provisionally and inconsistently assigned markers, only blood group P is seen to be in linkage with HLA.The study was supported in part by the Deutsche Forschungsgemeinschaft  相似文献   

20.
Autosomal recessive severe congenital neutropenia (SCN) or Kostmann syndrome is characterised by reduced neutrophil counts and subsequent recurrent bacterial infections. The disease was originally described in a large consanguineous pedigree from Northern Sweden. A genome-wide autozygosity scan was initiated on samples from four individuals in the original pedigree using high density single nucleotide polymorphism (SNP) genotyping arrays in order to map the disease locus. Thirty candidate regions were identified and the ascertainment of samples from two additional patients confirmed a single haplotype with significant association to the disorder (p<0.01) on chromosome 1q22. One affected individual from the original Kostmann pedigree was confirmed as a phenocopy. The minimal haplotype shared by affected individuals spans a candidate region of 1.2 Mb, containing several potential candidate genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号