首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma.

Methods

We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity.

Results

The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (N)PE of 35 genes previously implicated in molecular mechanisms related to glaucoma.

Conclusion

Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.  相似文献   

2.
Functional defects in cilia are associated with various human diseases including congenital hydrocephalus. Previous studies suggested that defects in cilia not only disrupt the flow of cerebrospinal fluid (CSF) generated by motile cilia in ependyma lining the brain ventricles, but also cause increased CSF production at the choroid plexus. However, the molecular mechanisms of CSF overproduction by ciliary dysfunction remain elusive. To dissect the molecular mechanisms, choroid plexus epithelial cells (CPECs) were isolated from porcine brain. These cells expressed clusters of primary cilia on the apical surface. Deciliation of CPECs elevated the intracellular cyclic AMP (cAMP) levels and stimulated basolateral‐to‐apical fluid transcytosis, without detrimental effects on other morphological and physiological features. The primary cilia possessed neuropeptide FF (NPFF) receptor 2. In deciliated cells, the responsiveness to NPFF was reduced at nanomolar concentrations. Furthermore, CPECs expressed NPFF precursor along with NPFFR2. An NPFFR antagonist, BIBP3226, increased the fluid transcytosis, suggesting the presence of autocrine NPFF signaling in CPECs for a tonic inhibition of fluid transcytosis. These results suggest that the clusters of primary cilia in CPECs act as a sensitive chemosensor to regulate CSF production.  相似文献   

3.
The choroid plexus (ChP) epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF) that bathes and nourishes the central nervous system (CNS). In addition to the CSF, ChP epithelial cells (CPECs) produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1) and epidermal growth factor (EGF) as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.  相似文献   

4.
5.
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.  相似文献   

6.
Abstract: The cystic fibrosis gene product, cystic fibrosis transmembrane conductance regulator (CFTR), functions as a CI channel that is regulated by cyclic AMP-dependent phosphorylation. We have investigated the expression of CFTR protein in the rodent brain by both western blotting of samples prepared by microdissection and immunohistochemistry. CFTR was found to be expressed in choroid plexus and ependyma. In tissue sections, CFTR-like immunoreactivity was concentrated in fine puncta localized about 1–2 µm from the CSF-contacting side of ependyma and choroid plexus. CFTR in choroid plexus may play a role in the regulation of the composition of CSF by cyclic AMP-elevating agents, but the role of this chloride transporter in ependymal function remains to be determined.  相似文献   

7.

Background

The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE.

Methods

We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE.

Results

We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier.

Conclusion

These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular degeneration.  相似文献   

8.
9.
The meninges (dura, pia and arachnoid) are critical membranes encasing and protecting the brain within the skull. The leptomeninges, which comprise the arachnoid and pia, have many functions beyond brain protection including roles in neurogenesis, fibrotic scar formation and brain inflammation. Similarly, the choroid plexus plays important roles in normal brain function but is also involved in brain inflammation. We have begun studying the role of human leptomeninges and choroid plexus in brain inflammation and leptomeninges in fibrotic scar formation, using human brain derived explant cultures. To study the composition of the cells generated in these explants we undertook immunocytochemical characterisation. Cells, mainly pericytes and meningeal macrophages, emerge from leptomeningeal explants (LME’s) and respond to inflammatory mediators by producing inflammatory molecules. LME-derived cells also respond to mechanical injury and cytokines, providing an in vitro human brain model of fibrotic scar formation. Choroid plexus explants (CPE’s) generate epithelial cells, pericytes and microglia/macrophages. CPE-derived cells also respond to inflammatory mediators. LME and CPE explants survive and generate cells for many months in vitro and provide a remarkable opportunity to study basic mechanisms of human brain inflammation and fibrosis and to test human-active anti-inflammatory and anti-scarring treatments.  相似文献   

10.
An emerging concept of normal brain immune surveillance proposes that recently and moderately activated central memory T lymphocytes enter the central nervous system (CNS) directly into the cerebrospinal fluid (CSF) via the choroid plexus. Within the CSF space, T cells inspect the CNS environment for cognate antigens. This gate of entry into the CNS could also prevail at the initial stage of neuroinflammatory processes. To actually demonstrate T cell migration across the choroidal epithelium forming the blood-CSF barrier, an in vitro model of the rat blood-CSF barrier was established in an “inverse” configuration that enables cell transmigration studies in the basolateral to apical, i.e. blood/stroma to CSF direction. Structural barrier features were evaluated by immunocytochemical analysis of tight junction proteins, functional barrier properties were assessed by measuring the monolayer permeability to sucrose and the active efflux transport of organic anions. The migratory behaviour of activated T cells across the choroidal epithelium was analysed in the presence and absence of chemokines. The migration pathway was examined by confocal microscopy. The inverse rat BCSFB model reproduces the continuous distribution of tight junction proteins at cell margins, the restricted paracellular permeability, and polarized active transport mechanisms, which all contribute to the barrier phenotype in vivo. Using this model, we present experimental evidence of T cell migration across the choroidal epithelium. Cell migration appears to occur via a paracellular route without disrupting the restrictive barrier properties of the epithelial interface. Apical chemokine addition strongly stimulates T cell migration across the choroidal epithelium. The present data provide evidence for the controlled migration of T cells across the blood-CSF barrier into brain. They further indicate that this recruitment route is sensitive to CSF-borne chemokines, extending the relevance of this migration pathway to neuroinflammatory and neuroinfectious disorders which are typified by elevated chemokine levels in CSF.  相似文献   

11.
Hemosiderin Granules in the Choroid Plexus   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

12.
The protein kinase C-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3) protein was discovered a decade ago as a protein kinase C θ (PKCθ)-binding protein in human T lymphocytes. PICOT possesses an amino-terminal monothiol thioredoxin-like domain and a carboxy-terminal tandem repeat of a monothiol glutaredoxin-like domain. Nevertheless, the enzymatic activities of PICOT and its potential substrates have not yet been characterized and its biological importance is unknown. Earlier studies reported the presence of PICOT in several different cell lines and tissues, but its expression pattern has not been thoroughly investigated. We performed Northern blot analysis of 19 different human organs and tissues and found the expression of PICOT mRNA in all organs and tissues tested. Western blot analysis confirmed the expression of PICOT at the protein level in all organs and tissues tested and showed, in addition, that PICOT and PKCθ expression in different tissues only partially overlap. These findings support the involvement of PICOT in biological functions that are independent of PKCθ. To analyze the in vivo expression pattern of PICOT within cells of different human organs, we performed immunohistochemical staining using PICOT-specific antibodies. Analysis of breast, pituitary, adrenal, pancreas, and kidney sections demonstrated a differential expression of PICOT in various cell types, with a predominant cytosolic staining of epithelial cells and low or undetectable levels of PICOT in the stroma. (J Histochem Cytochem 58:799–806, 2010)  相似文献   

13.
Understanding how human cardiomyocytes mature is crucial to realizing stem cell-based heart regeneration, modeling adult heart diseases, and facilitating drug discovery. However, it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomy-ocytes mature during fetal development and childhood, as well as difficulty in avoiding variations among individuals. Using model animals such as mice can be a useful strategy;nonetheless, it is not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice. Therefore, we performed a comparative gene expression analysis of mice and human samples. First, we examined two distinct mice microarray platforms for shared gene expression profiles, aiming to increase reliability of the analysis. We identified a set of genes display-ing progressive changes during maturation based on principal component analysis. Second, we demonstrated that the genes identified had a differential expression pattern between adult and ear-lier stages (e.g., fetus) common in mice and humans. Our findings provide a foundation for further genetic studies of cardiomyocyte maturation.  相似文献   

14.
15.
Gap junctions arc intercellular, water-filled channels composed of transmembrane proteins called connexins, six of which are arranged radially and dock with six homologous proteins in an adjacent cell to form an approximate 16 A pore. Through this pore cell-to-cell transfer of small water-soluble molecules up to about 1000 daltons occurs along concentration gradients. Connexins comprise a multigene family that share consensus sequences in the trans-membrane domains and the first and second extracellular loops. Comparison of the protein sequences of known human connexins with the draft nucleotide sequence of the human genome revealed two clones from chromosome 6 which showed strong similarity to highly conserved connexin sequences. Detailed analysis revealed the presence of a 672 nt open reading frame in these clones, encoding a 223 amino acid polypeptide with a predicted molecular weight of about 25 kD. This is smaller than other known human connexins. The ORF of the potential connexin25 was amplified by semi-nested PCR using human genomic DNA as a template. To confirm that this new gene encodes a connexin, Cx25 was transfected into a gap junction deficient subclone of the human HeLa cell line. After selection of transformants, cells were microinjected with the fluorescent dye Lucifer yellow. Transfectants but not controls successfully transferred dye, demonstrating that this new gene encodes a functional connexin.  相似文献   

16.
Using light and electron microscopy and immunocytochemistry methods, structural organization of the formed blood-cerebrospinal fluid barrier (BCSFB) of the human brain choroid plexus in embryos of 6–9 weeks of development was studied. The main structures peculiar to the mature BCSFB have been established to appear with formation of the choroid plexus at the end of the 2nd month of the human intrauterine development. Fenestrae in the choroid plexus capillary endothelium are revealed since the 9th week of prenatal development. Characteristic of the human embryonic BCSFB are a poor development of the plexus capillary basal membrane, scanty pericytes, a high activity of interstitial macrophages, which suggests the barrier immaturity. A significant amount of cytoplasmic glycogen inclusions revealed in plexus epitheliocytes seems to be due to peculiar trophic requirements of developing brain cells under conditions of an insufficient development of the local blood supply.  相似文献   

17.
刘丹  曾钦朦  刘斌  李煜  陈世品 《植物研究》2020,40(4):613-622
采用第二代Illumina HiSeq测序技术对闽楠的木质部、韧皮部、叶片进行转录组测序,分别获得Clean Reads片段41 383 707条、43 343 922条、44 191 586条,经转录本拼接后得到序列总长度达120 535 288 bp的383 331条Conting片段,进一步组装得到平均长度为542 bp的151 729条Unigenes。将闽楠转录组Unigenes进行基因功能注释,与NR数据库比对发现,其与葡萄的相似序列最多(34%),与黄瓜、野草莓、大豆的同源性较低(各占3%);进行GO功能注释,可将其划分为生物过程、细胞成分、分子功能3大类共计52个分支,与eggNOG数据库比对可分为25类,通过KEGG功能注释可知转录组中涉及的基因共参与了176条代谢通路,其中核糖体和碳代谢获得的注释较多。另外通过MISA软件分析,共获得35 972个SSR位点。其中,单核苷酸、二核苷酸和三核苷酸为优势重复类型,SSR位点数分别为21 762(60.50%),8 931(24.83%),4 924(13.69%)。闽楠转录组分析及基因功能注释为深入开展闽楠遗传育种及分子生物学相关研究奠定基础。  相似文献   

18.
Glycerol kinase (Gyk) participates in the metabolism of endogenously derived and dietary glycerol. Deficiency of the human enzyme activity is an X-linked recessive disorder with a clinical picture varying from childhood metabolic crisis to asymptomatic adults incidentally identified by hyperlipidemia screening (pseudohypertriglyceridemia). Gyk is a member of a small group of kinases termed ambiquitous enzymes that are found in the cytosol or as membrane-bound enzymes associated with the voltage-dependent anion channel of the mitochondrial outer membrane. It was recently reported that in humans there are X-linked and autosomal copies of Gyk sequences, both apparently functional genes and processed pseudogenes. To understand the role of Gyk in normal metabolism and the variable clinical features seen with Gyk deficiency, we have characterized the mouse Gyk gene. We present the sequence of a full-length mouse Gyk cDNA that is alternatively spliced in brain. The Gyk gene was mapped to the mouse X chromosome by both fluorescencein situhybridization and an interspecies backcross panel, demonstrating conservation of synteny withdmd.To confirm the functional identity of the cDNA, transient transfection of the cDNA into COS7 cells was shown to cause a marked elevation in glycerol kinase activity.  相似文献   

19.
20.
Nucleoside Transporter of Cerebral Micro vessels and Choroid Plexus   总被引:1,自引:0,他引:1  
The nucleoside transporter of cerebral microvessels and choroid plexus was identified and characterized using [3H]nitrobenzylthioinosine (NBMPR) as a specific probe. [3H]NBMPR bound reversibly and with high affinity to a single specific site in particulate fractions of cerebral microvessels, choroid plexus, and cerebral cortex of the rat and the pig. The dissociation constants (KD 0.1-0.7 nM) were similar in the various tissue preparations from each species, but the maximal binding capacities (Bmax) were about fivefold higher in cerebral microvessels and choroid plexus than in the cerebral cortex. Nitrobenzylthioguanosine and dipyridamole were the most potent competitors for [3H]NBMPR binding. Several naturally occurring nucleosides displaced specific [3H]NBMPR binding to cerebral microvessels in vitro, in a rank order that correlated well with their ability to cross the blood-brain barrier in vivo. Adenosine analogues and theophylline were less effective in displacing [3H]NBMPR binding than in displacing adenosine receptor ligands. Photoactivation of cerebral microvessels and choroid plexus bound with [3H]NBMPR followed by solubilization and polyacrylamide gel electrophoresis labeled a protein(s) with a molecular weight of approximately 60,000. These results indicate that cerebral microvessels and choroid plexus have a much higher density of the nucleoside transporter moiety than the cerebral cortex and that this nucleoside transporter has pharmacological properties and a molecular weight similar to those of erythrocytes and other mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号