首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N2 fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both mangroves were able to degrade the hydrocarbons added; however, whereas the majority of oil added to the mesocosm derived from the polluted mangrove was degraded in the 75 days of the experiment, there was only partially degradation in the mesocosm derived from the pristine mangrove. qPCR showed that the addition of oil led to an increase in rrs gene copy numbers in both mesocosms, having almost no effect on the nifH copy numbers in the pristine mangrove. Sequencing of nifH clones indicated that the changes promoted by the oil in the polluted mangrove were greater than those observed in the pristine mesocosm. The main effect observed in the polluted mesocosm was the selection of a single phylotype which is probably adapted to the presence of petroleum. These results, together with previous reports, give hints about the relationship between N2 fixation and hydrocarbon degradation in natural ecosystems.  相似文献   

2.
Aims: In this study, we evaluated the removal efficiency of fuel hydrocarbons from a jet fuel contaminated area using bioaugmentation treatment in biopile. Methods and Results: The hydrocarbon analysis of the sample revealed total hydrocarbons mainly constituted by benzene, toluene, ethylbenzene, xylenes (BTEX) and heavy aliphatic hydrocarbons. Enrichments of soil sample were performed with BTEX, pristane and fuel JP-5, respectively, selected hydrocarbon-degrading strains, namely Acinetobacter sp., Pseudomonas sp. and Rhodococcus sp. Three hundred litres of culture containing 108 cell ml−1 of each strain and nutrients sprayed on the biopile allowed a removal of 90% of total hydrocarbons in 15 days. Bioremediation process was monitored by observation of the respiration rate and the bacterial abundance and GC-MS analysis. Conclusions: The efficiency of the treatment in the biopile was considerable. The assessment of microbial activity during the experiment is necessary for interventions targeted to improve environmental parameters such as humidity, temperature, pH and nutrients for optimization of the bioremediation process. Significance and Impact of the Study: A better knowledge of microbial successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in biopile study improve our understanding of processes occurring during oil pollution.  相似文献   

3.
Industrial pollutants such as heavy metals and hydrocarbons in soils represent a serious concern due to their persistence and negative effects on the environment, affecting cellular processes in living organisms and even causing mutations and cancer. The main objectives of this work were to evaluate the efficiency of Opuntia ficus in the phytoremediation of a soil polluted with used motor oil. Two other species, one with different and one with similar characteristics, relatively, were used for comparison purposes: Lolium perenne and Aloe barbadensis. The effect of the plants on lead solubility and bioaccumulation, the biomass production of each specie and the microbial counts and bacterial identification for each experiment was studied. Total petroleum hydrocarbons (TPH) were measured every 5 weeks throughout the 20-week phytoremediation experiment. At the end of the experiment soluble Pb, Pb extracted by the plant species, microbiological counts, total biomass and bacterial species in soil were analyzed. Even though Lolium perenne showed the highest TPH removal (47%), Opuntia ficus produced the highest biomass and similar removal (46%). Since Opuntia ficus requires low amounts of water and grows fast, it would be a suitable option in the remediation of soils polluted with hydrocarbons and/or heavy metals.  相似文献   

4.
Quantifying the effects of hydrocarbon contamination on hybrid poplar fine root dynamics provides information about how well these trees tolerate the adverse conditions imposed by the presence of petroleum in the soil. The objective of this research was to investigate the relationship between the varying concentrations of total petroleum hydrocarbons (TPH) and nutrients across a hydrocarbon-contaminated site, and quantify the effects of these properties on the spatial and temporal patterns of fine root production of hybrid poplar (P. deltoides × P. petrowskyana C. V. Griffin) Twelve minirhizotron tubes were distributed across a TPH-contaminated site at Hendon, SK, Canada, and facilitated quantification of fine root production in areas of varying contamination levels. Residual hydrocarbon contamination was positively correlated with soil total C and N, which may suggest that the hydrocarbons remaining in the soil are associated with organic forms of these nutrients. Fine root production was stimulated by small amounts of hydrocarbon contamination at the field site. Nonlinear regression described fine root production as increasing linearly up to approximately 500 mg kg? 1 TPH, then remaining constant as contamination increased. Stimulation of hybrid poplar fine root production in hydrocarbon-contaminated soil could to lead to enhanced contaminant degradation as a result of stimulated microbial activity via a greater rhizosphere effect.  相似文献   

5.
Populations of soil amoebas were monitored in two salt marshes in Staten Island, NY for 2 years. One site, Gulfport Reach on the Arthur Kill, has been highly impacted by numerous oil spills. In particular, in 1990 a massive no. 2 fuel oil spill from a ruptured pipe flooded the area; its sediments had total petroleum hydrocarbon (TPH) concentrations in the range 800-46,000 ppm. A reference site 11 km away, on the Atlantic coast, had low TPH levels. Amoeba population densities were in general higher in the impacted sediments. In laboratory microcosm experiments, sediment samples from unimpacted sites were treated with added fresh (unweathered) hydrocarbons (no. 2 fuel oil) and cultured; these also yielded higher amoeba numbers than untreated controls. Four distinct amoeba morphotypes were monitored. Changes in population levels of total amoebas were correlated in the two sites, particularly for morphotype 2 (r = 0.83). The ratios of total amoebas to total bacterial numbers were also correlated (r = 0.85) between the sites. This suggests the amoebas may function as generalists, and that their trophic relation to bacterial prey is not much affected by the presence of petroleum hydrocarbons, but rather may reflect regional parameters such as ambient temperature or other physical factors.  相似文献   

6.
Ecotoxicology is primarily concerned with predicting the effects of toxic substances on the biological components of the ecosystem. In remote, high latitude environments such as Antarctica, where field work is logistically difficult and expensive, and where access to adequate numbers of soil invertebrates is limited and response times of biota are slow, appropriate modeling tools using microbial community responses can be valuable as an alternative to traditional single‐species toxicity tests. In this study, we apply a Bayesian nonparametric model to a soil microbial data set acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica. We model community change in terms of OTUs (operational taxonomic units) in response to a range of total petroleum hydrocarbon (TPH) concentrations. The Shannon diversity of the microbial community, clustering of OTUs into groups with similar behavior with respect to TPH, and effective concentration values at level x, which represent the TPH concentration that causes x% change in the community, are presented. This model is broadly applicable to other complex data sets with similar data structure and inferential requirements on the response of communities to environmental parameters and stressors.  相似文献   

7.
We investigated the influence of three factors—diesel oil concentration [2500, 5000, 10,000, 20,000 mg total petroleum hydrocarbons (TPH) kg−1 soil], biostimulation (unfertilized, inorganic fertilization with NPK nutrients, or oleophilic fertilization with Inipol EAP22), and incubation time—on hydrocarbon removal, enzyme activity (lipase), and microbial community structure [phospholipid fatty acids (PLFA)] in a laboratory soil bioremediation treatment. Fertilization enhanced TPH removal and lipase activity significantly (P ≤ 0.001). The higher the initial contamination, the more marked was the effect of fertilization. Differences between the two fertilizers were not significant (P > 0.05). Microbial communities, as assessed by PLFA patterns, were primarily influenced by the TPH content, followed by fertilization, and the interaction of these two factors, whereas incubation time was of minor importance. This was demonstrated by three-factorial analysis of variance and multidimensional scaling analysis. Low TPH content had no significant effect on soil microbial community, independent of the treatment. High TPH content generally resulted in increased PLFA concentrations, whereby a significant increase in microbial biomass with time was only observed with inorganic fertilization, whereas oleophilic fertilization (Inipol EAP22) tended to inhibit microbial activity and to reduce PLFA contents with time. Among bacteria, PLFA indicative of the Gram-negative population were significantly (P ≤ 0.05) increased in soil samples containing high amounts of diesel oil and fertilized with NPK after 21–38 days of incubation at 20°C. The Gram-positive population was not significantly influenced by TPH content or biostimulation treatment.  相似文献   

8.
This study evaluated the effects of native plants (Sorghum halepense and Aeluropus littoralis), total petroleum hydrocarbons (TPH) concentrations, and nutrients on the removal of TPHs from a highly saline clay soil. For a period of 180 days, rhizosphere microbial number, plant biomass, and residual TPHs were determined monthly. Results showed that TPH removal from soil in the rhizosphere was 13% higher than that in the control (unplanted soil). In addition, the number of heterotrophic bacteria in the rhizosphere and non-rhizosphere soil was 7.407 and 6.629 log10CFU/g, respectively. The maximum TPH removal, microbial numbers, and plant biomass were measured in the treated soil, polluted with 0.86% (w/w) of TPH. The high clay and salinity of the experimental soil had a negative effect on the phytoremediation efficiency. Hence, it was necessary to improve the physicochemical properties of the soil to provide a good condition for plants and microbes, thereby increasing the phytoremediation efficiency.  相似文献   

9.
Soil samples from a transect from low to highly hydrocarbon-contaminated soils were collected around the Brazilian Antarctic Station Comandante Ferraz (EACF), located at King George Island, Antarctica. Quantitative PCR (qPCR) analysis of bacterial 16S rRNA genes, 16S rRNA gene (iTag), and shotgun metagenomic sequencing were used to characterize microbial community structure and the potential for petroleum degradation by indigenous microbes. Hydrocarbon contamination did not affect bacterial abundance in EACF soils (bacterial 16S rRNA gene qPCR). However, analysis of 16S rRNA gene sequences revealed a successive change in the microbial community along the pollution gradient. Microbial richness and diversity decreased with the increase of hydrocarbon concentration in EACF soils. The abundance of Cytophaga, Methyloversatilis, Polaromonas, and Williamsia was positively correlated (p-value = <.05) with the concentration of total petroleum hydrocarbons (TPH) and/or polycyclic aromatic hydrocarbons (PAH). Annotation of metagenomic data revealed that the most abundant hydrocarbon degradation pathway in EACF soils was related to alkyl derivative-PAH degradation (mainly methylnaphthalenes) via the CYP450 enzyme family. The abundance of genes related to nitrogen fixation increased in EACF soils as the concentration of hydrocarbons increased. The results obtained here are valuable for the future of bioremediation of petroleum hydrocarbon-contaminated soils in polar environments.  相似文献   

10.
Total Petroleum Hydrocarbons (TPH) are one of the most common groups of persistent environmental toxic organic contaminants to many organisms as well as to humans. In the present work, oil-polluted soil samples were phyto-remediated and analyzed. The investigated soil samples were collected from a location close to the oil petroleum production site in Ras-Gharib, Red Sea, Egypt. The phytoremediation process through TPH reduction and/or removal was carried out using Helianthus annuus (sunflower plant) based on its efficiency as a phytoremediator for organic pollutants. A preliminary four-week scheme of Helianthus annuus remediation, supported by twice quantized fertilization, provided a result of ~56% clean soil. Contaminated and phyto-remediated samples were diagnosed and analyzed through particle size distribution, Carbon-Hydrogen-Sulfur-Nitrogen elemental analysis (CHSN), Organic Matter content (OM%), Total Petroleum Hydrocarbons determination (%) and spectroscopically through Laser Induced Breakdown Spectroscopy (LIBS) and Laser Induced Fluorescence (LIF). Promising results have been achieved indicating the feasibility of planting sunflower for effective TPH remediation of the polluted soil and also the possibility of in situ monitoring of the remediation with easy, cost effective and fast spectrochemical analytical techniques, namely LIBS and LIF.  相似文献   

11.
Bacterial Succession in a Petroleum Land Treatment Unit   总被引:10,自引:1,他引:9       下载免费PDF全文
Bacterial community dynamics were investigated in a land treatment unit (LTU) established at a site contaminated with highly weathered petroleum hydrocarbons in the C10 to C32 range. The treatment plot, 3,000 cubic yards of soil, was supplemented with nutrients and monitored weekly for total petroleum hydrocarbons (TPH), soil water content, nutrient levels, and aerobic heterotrophic bacterial counts. Weekly soil samples were analyzed with 16S rRNA gene terminal restriction fragment (TRF) analysis to monitor bacterial community structure and dynamics during bioremediation. TPH degradation was rapid during the first 3 weeks and slowed for the remainder of the 24-week project. A sharp increase in plate counts was reported during the first 3 weeks, indicating an increase in biomass associated with petroleum degradation. Principal components analysis of TRF patterns revealed a series of sample clusters describing bacterial succession during the study. The largest shifts in bacterial community structure began as the TPH degradation rate slowed and the bacterial cell counts decreased. For the purpose of analyzing bacterial dynamics, phylotypes were generated by associating TRFs from three enzyme digests with 16S rRNA gene clones. Two phylotypes associated with Flavobacterium and Pseudomonas were dominant in TRF patterns from samples during rapid TPH degradation. After the TPH degradation rate slowed, four other phylotypes gained dominance in the community while Flavobacterium and Pseudomonas phylotypes decreased in abundance. These data suggest that specific phylotypes of bacteria were associated with the different phases of petroleum degradation in the LTU.  相似文献   

12.
The aim of this study was to degrade total petroleum hydrocarbon (TPH) in a petroleum sludge contaminated site (initial TPH concentration of 65,000–75,000 mg.kg–1) with two native sedge species namely Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Fertilized and unfertilized treatments were maintained separately to record the influence of fertilizer in TPH degradation. The average biomass production (twenty plants from each treatment) of C. rotundus was 345.5 g and that of C. brevifolius was 250.6 g in fertilized soil during 360 days. Decrease in soil TPH concentration was higher in fertilized soil (75% for C. rotundus and 64% for C. brevifolius) than in unfertilized soil (36% for C. rotundus and 32% for C. brevifolius). In unvegetated treatments, decrease in soil TPH concentration in fertilized (12%) and unfertilized soil (8%) can be attributed to natural attenuation and microbial degradation. TPH accumulation in roots and shoots was significantly higher in fertilized soil in comparison to unfertilized soils (p < 0.05). Most probable number (MPN) in planted treatments was significantly higher than in unplanted treatments (p < 0.05).  相似文献   

13.
The diversity among a set of bacterial strains that have the capacity to degrade total petroleum hydrocarbons (TPH) in soil contaminated with oily sludge (hazardous hydrocarbon waste from oil refineries) was determined. TPH is composed of alkane, aromatics, nitrogen-, sulfur-, and oxygen-containing compound, and asphaltene fractions of crude oil. The 150 bacterial isolates which could degrade TPH were isolated from soil samples obtained from diverse geoclimatic regions of India. All the isolates were biochemically characterized and identified with a Biolog microbial identification system and by 16S rDNA sequencing. Pseudomonas citronellolis predominated among the 150 isolates obtained from six different geographically diverse samplings. Of the isolates, 29 strains of P. citronellolis were selected for evaluating their genetic diversity. This was performed by molecular typing with repetitive sequence (Rep)-based PCR with primer sets ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and PCR-based ribotyping. Strain-specific and unique genotypic fingerprints were distinguished by these molecular typing strategies. The 29 strains of P. citronellolis were separated into 12 distinguishable genotypic groups by Rep-PCR and into seven genomic patterns by PCR-based ribotyping. The genetic diversity of the strains was related to the different geoclimatic isolation sites, type of oily sludge, and age of contamination of the sites. These results indicate that a combination of Rep-PCR fingerprinting and PCR-based ribotyping can be used as a high-resolution genomic fingerprinting method for elucidating intraspecies diversity among strains of P. citronellolis.  相似文献   

14.
Biodegradation by naturally occurring populations of microorganisms is a major mechanism for the removal of oil hydrocarbons from the environment. Therefore, follow-up of bacterial populations and chemical indices of biodegradation are important components of contaminated site assessment studies. Over a 4-year period following an accidental diesel contamination of the sub-Antarctic Crozet Archipelago (51°51′E–46°25′S), a field study was carried out in the contaminated area that is located in a transition zone between an arid fell-field (upstream) and a wet vegetated area (downstream). This study included a monitoring of heterotrophic and hydrocarbon-degrading bacterial abundance and chemical analysis of the remaining hydrocarbons. Significant higher number of heterotrophic and hydrocarbon-degrading bacterial counts revealed a rapid acclimation of sub-Antarctic microbial soil communities to the diesel fuel contamination. A chemical survey conducted during the last 2 years (2002 and 2003) showed that the total extractable hydrocarbons (TPH) content in arid fell field was reduced to ≤50% of their value while it was reduced only to ≤65% in vegetated soil. In addition, the decrease of TPH was always higher in the presence of fertilizer in the arid contaminated area, while fertilizer addition was almost inefficient in the wet contaminated one. All these results demonstrate a serious influence of the soil properties on the degradation rate. However, all chemical indices showed a significant reduction of alkanes and light aromatics in both contaminated area confirming a regular oil degradation process.  相似文献   

15.
Two samples of oily waste organics (OWO) from petroleum wells were added to heath soils from Tierra del Fuego, Argentina, and the effects on hydrocarbon leaching, microbial population, and plant growth were studied. These mixtures and a control soil were subjected to four deionized water leachates. For each leachate, total petroleum hydrocarbons (TPH), aliphatic hydrocarbons (ALH), aromatic hydrocarbons (ARH) with three or fewer rings, ARH with more than three rings, and oil and grease (O&G) were measured. After leaching, six Dactylis glomerata L. plants were grown in each soil column. Plant growth and the total number of aerobic and nitrifier microorganisms were measured in soil. The 10% OWO sample increased the TPH in the leachate, but the 1% sample did not. The ALH, ARH, and O&G of each leachate followed patterns similar to that for TPH. Plant growth diminished and the total number of aerobic and nitrifier microorganisms decreased with increasing OWO, especially when the OWO was from a fresh residue rather than an aged residue. The greater inhibitive effect of fresh residue on plant growth was attributed to a higher concentration of light hydrocarbons, which are more toxic than heavy hydrocarbons. For soil with 1% OWO added, the TPH and other organics did not differ from the control soil. This result, combined with the 10-year average annual rainfall and the water table elevation at the site, suggests that the risk of contaminating the water table is relatively low. Thus, a 1% addition of OWO in soil would be appropriate to use in landfarming of OWO.  相似文献   

16.
The potential for use of alternatives to total petroleum hydrocarbons (TPH) for remediation purposes was examined specifically for JP‐4 fuel. The study objective was to determine the scientific basis for use of fuel constituents other than TPH in establishing soil cleanup standards at JP‐4‐contaminated sites. The general bases for TPH soil cleanup standards or goals were characterized. Problems with the use of TPH for cleanup included its lack of specificity (e.g., method‐, medium‐, and time‐from‐spill‐dependency) as well as the lack of toxicological relevance. JP‐4 fuel constituents (alkanes, BTEX [i.e., benzene, toluene, ethylbenzene, xylenes], polycyclic aromatic hydrocarbons [PAHs, i.e., chrysene], and naphthalenes) were identified as potential TPH alternatives. A series of criteria were applied to assess the viability of the use of specific JP‐4 constituents as TPH alternatives, and to select the most appropriate alternative. Criteria included chemical fate and transport, toxicity, and regulatory standards for relevant media of concern. Consideration of these criteria ultimately resulted in selection of benzene as the JP‐4 indicator of choice. The potential for altering risk‐based benzene soil cleanup concentrations (preliminary remediation goals, PRGs) was examined, and encompassed the basis for the existing benzene cancer slope factor (SF) as well as the role of distributional analysis of exposure parameters (Monte Carlo) that might be employed at JP‐4 spill sites. Results and conclusions are presented, and the implications for fuels other than JP‐4 are also discussed.  相似文献   

17.
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.  相似文献   

18.
Microbial community composition and activity were characterized in soil contaminated with lead (Pb), chromium (Cr), and hydrocarbons. Contaminant levels were very heterogeneous and ranged from 50 to 16,700 mg of total petroleum hydrocarbons (TPH) kg of soil−1, 3 to 3,300 mg of total Cr kg of soil−1, and 1 to 17,100 mg of Pb kg of soil−1. Microbial community compositions were estimated from the patterns of phospholipid fatty acids (PLFA); these were considerably different among the 14 soil samples. Statistical analyses suggested that the variation in PLFA was more correlated with soil hydrocarbons than with the levels of Cr and Pb. The metal sensitivity of the microbial community was determined by extracting bacteria from soil and measuring [3H]leucine incorporation as a function of metal concentration. Six soil samples collected in the spring of 1999 had IC50 values (the heavy metal concentrations giving 50% reduction of microbial activity) of approximately 2.5 mM for CrO42− and 0.01 mM for Pb2+. Much higher levels of Pb were required to inhibit [14C]glucose mineralization directly in soils. In microcosm experiments with these samples, microbial biomass and the ratio of microbial biomass to soil organic C were not correlated with the concentrations of hydrocarbons and heavy metals. However, microbial C respiration in samples with a higher level of hydrocarbons differed from the other soils no matter whether complex organic C (alfalfa) was added or not. The ratios of microbial C respiration to microbial biomass differed significantly among the soil samples (P < 0.05) and were relatively high in soils contaminated with hydrocarbons or heavy metals. Our results suggest that the soil microbial community was predominantly affected by hydrocarbons.  相似文献   

19.
AIMS: Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. METHODS AND RESULTS: An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. CONCLUSIONS: The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. SIGNIFICANCE AND IMPACT OF THE STUDY: A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.  相似文献   

20.
Effects of oil spills on microbial heterotrophs in Antarctic soils   总被引:7,自引:2,他引:5  
Oil spillage on the moist coastal soils of the Ross Sea region of Antarctica can impact on populations of microbial heterotrophs in these soils, as determined by viable plate counts and a most probable number technique. Elevated numbers of culturable hydrocarbon degraders, bacteria and fungi were detected in surface and subsurface soils from oil-contaminated sites, compared with nearby control sites. Culturable yeasts were not detected in soil from coastal control sites, yet reached >105 organisms g-1 dry weight in contaminated soils. The presence of hydrocarbons in soils resulted in a shift in the genera of culturable filamentous fungi. Chrysosporium dominated control soils, yet Phialophora was more abundant in oil-contaminated soils. Hydrocarbon degraders are most likely bacteria; however, fungi could play a role in degradation of hydrocarbons or their metabolites. Depleted levels of nitrate detected in some contaminated soils and decreased pH may be the result of growth of hydrocarbon degraders. Numbers and diversity of culturable microbes from Antarctic soil varied depending on whether a pristine site or a human-impacted (in this case, by fuel spills) site is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号