首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enteric neurons located in the gastro-intestinal tract are of particular importance to control digestive functions such as motility and secretion. In our recent publication, we showed that mouse myenteric neurons exhibit 2 types of tetrodotoxin-resistant Na+ currents: a fast inactivating Na+ current produced by Nav1.5 channels, present in nearly all myenteric neurons, and a persistent Na+ current attributed to Nav1.9 channels, restricted to the intrinsic primary afferent neurons (IPANs). By combination of experimental recording and computer simulation we found that Nav1.5 contributed to the upstroke velocity of action potentials (APs), whereas Nav1.9 opposed AP repolarization. Here, we detailed the Na+, Ca2+ and K+ currents used in our computational model of IPAN. We refined the prototype cell to reproduce the sustained firing pattern recorded in situ. As shown in experimental conditions we demonstrated that Nav1.9 channels critically determine the up-state life-time and thus, are essential to sustain tonic firing.  相似文献   

2.
Sublethal carbon monoxide (CO) exposure is frequently associated with myocardial arrhythmias, and our recent studies have demonstrated that these may be attributable to modulation of cardiac Na+ channels, causing an increase in the late current and an inhibition of the peak current. Using a recombinant expression system, we demonstrate that CO inhibits peak human Nav1.5 current amplitude without activation of the late Na+ current observed in native tissue. Inhibition was associated with a hyperpolarizing shift in the steady-state inactivation properties of the channels and was unaffected by modification of channel gating induced by anemone toxin (rATX-II). Systematic pharmacological assessment indicated that no recognized CO-sensitive intracellular signaling pathways appeared to mediate CO inhibition of Nav1.5. Inhibition was, however, markedly suppressed by inhibition of NO formation, but NO donors did not mimic or occlude channel inhibition by CO, indicating that NO alone did not account for the actions of CO. Exposure of cells to DTT immediately before CO exposure also dramatically reduced the magnitude of current inhibition. Similarly, l-cysteine and N-ethylmaleimide significantly attenuated the inhibition caused by CO. In the presence of DTT and the NO inhibitor Nω-nitro-l-arginine methyl ester hydrochloride, the ability of CO to inhibit Nav1.5 was almost fully prevented. Our data indicate that inhibition of peak Na+ current (which can lead to Brugada syndrome-like arrhythmias) occurs via a mechanism distinct from induction of the late current, requires NO formation, and is dependent on channel redox state.  相似文献   

3.

Background

The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome.

Method and Results

In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na+ currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation).

Conclusion

In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na+ current and depolarization force.  相似文献   

4.
Striking structural differences between voltage-gated sodium (Nav) channels from prokaryotes (homotetramers) and eukaryotes (asymmetric, four-domain proteins) suggest the likelihood of different molecular mechanisms for common functions. For these two channel families, our data show similar selectivity sequences among alkali cations (relative permeability, Pion/PNa) and asymmetric, bi-ionic reversal potentials when the Na/K gradient is reversed. We performed coordinated experimental and computational studies, respectively, on the prokaryotic Nav channels NaChBac and NavAb. NaChBac shows an “anomalous,” nonmonotonic mole-fraction dependence in the presence of certain sodium–potassium mixtures; to our knowledge, no comparable observation has been reported for eukaryotic Nav channels. NaChBac’s preferential selectivity for sodium is reduced either by partial titration of its highly charged selectivity filter, when extracellular pH is lowered from 7.4 to 5.8, or by perturbation—likely steric—associated with a nominally electro-neutral substitution in the selectivity filter (E191D). Although no single molecular feature or energetic parameter appears to dominate, our atomistic simulations, based on the published NavAb crystal structure, revealed factors that may contribute to the normally observed selectivity for Na over K. These include: (a) a thermodynamic penalty to exchange one K+ for one Na+ in the wild-type (WT) channel, increasing the relative likelihood of Na+ occupying the binding site; (b) a small tendency toward weaker ion binding to the selectivity filter in Na–K mixtures, consistent with the higher conductance observed with both sodium and potassium present; and (c) integrated 1-D potentials of mean force for sodium or potassium movement that show less separation for the less selective E/D mutant than for WT. Overall, tight binding of a single favored ion to the selectivity filter, together with crucial inter-ion interactions within the pore, suggests that prokaryotic Nav channels use a selective strategy more akin to those of eukaryotic calcium and potassium channels than that of eukaryotic Nav channels.  相似文献   

5.
Enteric neurons located in the gastro-intestinal tract are of particular importance to control digestive functions such as motility and secretion. In our recent publication, we showed that mouse myenteric neurons exhibit 2 types of tetrodotoxin-resistant Na+ currents: a fast inactivating Na+ current produced by Nav1.5 channels, present in nearly all myenteric neurons, and a persistent Na+ current attributed to Nav1.9 channels, restricted to the intrinsic primary afferent neurons (IPANs). By combination of experimental recording and computer simulation we found that Nav1.5 contributed to the upstroke velocity of action potentials (APs), whereas Nav1.9 opposed AP repolarization. Here, we detailed the Na+, Ca2+ and K+ currents used in our computational model of IPAN. We refined the prototype cell to reproduce the sustained firing pattern recorded in situ. As shown in experimental conditions we demonstrated that Nav1.9 channels critically determine the up-state life-time and thus, are essential to sustain tonic firing.  相似文献   

6.
Brugada syndrome is a life-threatening, inherited arrhythmia disorder associated with autosomal dominant mutations in SCN5A, the gene encoding the human cardiac Na+ channel α subunit (Nav1.5). Here, we characterized the biophysical properties of a novel Brugada syndrome-associated Nav1.5 mutation, A551T, identified in a proband who was successfully resuscitated from an episode of ventricular fibrillation with sudden collapse. Whole-cell currents through wild-type (WT) Nav1.5 and mutant (A551T) channels were recorded and compared in the human embryonic kidney cell line HEK293T transfected with SCN5A cDNA and SCN1B cDNA, using the patch-clamp technique. Current density was decreased in the A551T mutant compared to the WT. In addition, the A551T mutation reduced Nav1.5 activity by promoting entry of the channel into fast inactivation from the closed state, thereby shifting the steady-state inactivation curve by -5 mV. Furthermore, when evaluated at -90 mV, the resting membrane potential, but not at the conventionally used -120 mV, both the percentage, and rate, of channel recovery from inactivation were reduced in the mutant. These results suggest that the DI-DII linker may be involved in the stability of inactivation gating process. This study supports the notion that a reduction in Nav1.5 channel function is involved in the pathogenesis of Brugada syndrome. The structural-functional study of the Nav1.5 channel advances our understanding of its pathophysiolgocial function.  相似文献   

7.
8.

Objective

Dravet syndrome is a severe form of intractable pediatric epilepsy with a high incidence of SUDEP: Sudden Unexpected Death in epilepsy. Cardiac arrhythmias are a proposed cause for some cases of SUDEP, yet the susceptibility and potential mechanism of arrhythmogenesis in Dravet syndrome remain unknown. The majority of Dravet syndrome patients have de novo mutations in SCN1A, resulting in haploinsufficiency. We propose that, in addition to neuronal hyperexcitability, SCN1A haploinsufficiency alters cardiac electrical function and produces arrhythmias, providing a potential mechanism for SUDEP.

Methods

Postnatal day 15-21 heterozygous SCN1A-R1407X knock-in mice, expressing a human Dravet syndrome mutation, were used to investigate a possible cardiac phenotype. A combination of single cell electrophysiology and in vivo electrocardiogram (ECG) recordings were performed.

Results

We observed a 2-fold increase in both transient and persistent Na+ current density in isolated Dravet syndrome ventricular myocytes that resulted from increased activity of a tetrodotoxin-resistant Na+ current, likely Nav1.5. Dravet syndrome myocytes exhibited increased excitability, action potential duration prolongation, and triggered activity. Continuous radiotelemetric ECG recordings showed QT prolongation, ventricular ectopic foci, idioventricular rhythms, beat-to-beat variability, ventricular fibrillation, and focal bradycardia. Spontaneous deaths were recorded in 2 DS mice, and a third became moribund and required euthanasia.

Interpretation

These data from single cell and whole animal experiments suggest that altered cardiac electrical function in Dravet syndrome may contribute to the susceptibility for arrhythmogenesis and SUDEP. These mechanistic insights may lead to critical risk assessment and intervention in human patients.  相似文献   

9.
The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na+ (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na+ currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions.  相似文献   

10.
Various entities and genetic etiologies, including inherited long QT syndrome type 3 (LQT3), contribute to sudden infant death syndrome (SIDS). The goal of our research was to biophysically characterize a new SCN5A mutation (S1333Y) in a SIDS infant. S1333Y channels showed the gain of Na+ channel function characteristic of LQT3, including a persistent inward Na+ current and an enhanced window current that was generated by a −8 mV shift in activation and a +7 mV shift in inactivation. The correlation between the biophysical data and arrhythmia susceptibility suggested that the SIDS was secondary to the LQT3-associated S1333Y mutation.  相似文献   

11.

Aim

The aim of this study was to systemically evaluate the therapeutic efficacy of cytokine-induced killer (CIK) cells for the treatment of non-small cell lung cancer.

Materials and Methods

A computerized search of randomized controlled trials for CIK cell-based therapy was performed. The overall survival, clinical response rate, immunological assessment and side effects were evaluated.

Results

Overall, 17 randomized controlled trials of non-small cell lung cancer (NSCLC) with a total of 1172 patients were included in the present analysis. Our study showed that the CIK cell therapy significantly improved the objective response rate and overall survival compared to the non-CIK cell-treated group. After CIK combined therapy, we observed substantially increased percentages of CD3+, CD4+, CD4+CD8+, CD3+CD56+ and NK cells, whereas significant decreases were noted in the percentage of CD8+ and regulatory T cell (Treg) subgroups. A significant increase in Ag-NORs was observed in the CIK-treated patient group (p = 0.00001), whereas carcinoembryonic antigen (CEA) was more likely to be reduced to a normal level after CIK treatment (p = 0.0008). Of the possible major side effects, only the incidence of fever in the CIK group was significantly higher compared to the group that received chemotherapy alone.

Conclusion

The CIK cell combined therapy demonstrated significant superiority in the overall survival, clinical response rate, and T lymphocytes responses and did not present any evidence of major adverse events in patients with NSCLC.  相似文献   

12.
Gap junctions ensure the rapid propagation of the action potential throughout the myocardium. Three mutant forms of connexin40 (Cx40; A96S, M163V, and G38D), the primary component of the atrial gap junction channel, are associated with atrial fibrillation and retain the ability to form functional channels. We determined the biophysical properties of these mutant gap junctions in transiently transfected HeLa and N2A cells. All three mutants showed macroscopic junctional conductances over the range of 0.5 to 40 nS, and voltage dependences comparable to those of wild-type (WT) Cx40. However, the unitary conductance of G38D channels was ∼1.6-fold higher than that of WT Cx40 channels (∼220 vs. ∼135 pS), whereas the unitary conductances of the A96S and M163V mutants were similar to that of WT Cx40. Furthermore, the M163V and G38D channels exhibited approximately two- and approximately fivefold higher permeability to the anionic dye Lucifer yellow (LY) relative to K+ (LY/K+) compared with that of WT Cx40, whereas A96S LY transfer was similar to that of WT (G38D > M163V > A96S ≈ Cx40WT). In contrast, G38D channels were almost impermeable to cationic ethidium bromide (EtBr), suggesting that G38D alters channel selectivity. Conversely, A96S and M163V channels showed enhanced EtBr permeability relative to WT Cx40, with the following permeability order: M163V > A96S > Cx40WT > G38D. Altered conductive and permeability properties of mutant channels suggest an essential role for Cx40-mediated biochemical and electrical coupling in cardiac tissues. The altered properties of the three single-base substitution mutants may play a role in mechanisms of reentry arrhythmias.  相似文献   

13.
To explore the role of pore-lining amino acids in Na+ channel ion-selectivity, pore residues were  replaced serially with cysteine in cloned rat skeletal muscle Na+ channels. Ionic selectivity was determined by measuring permeability and ionic current ratios of whole-cell currents in Xenopus oocytes. The rSkM1 channels displayed an ionic selectivity sequence Na+>Li+>NH4 +>>K+>>Cs+ and were impermeable to divalent cations.  Replacement of residues in domain IV showed significantly enhanced current and permeability ratios of NH4 + and K+, and negative shifts in the reversal potentials recorded in the presence of external Na+ solutions when compared to cysteine mutants in domains I, II, and III (except K1237C). Mutants in domain IV showed altered selectivity sequences: W1531C (NH4 +>K+>Na+≥Li+≈Cs+), D1532C, and G1533C (Na+>Li+≥NH4 +>K+>Cs+). Conservative replacement of the aromatic residue in domain IV (W1531) with phenylalanine or tyrosine retained Na+ selectivity of the channel while the alanine mutant (W1531A) reduced ion selectivity. A single mutation within the third pore forming region (K1237C) dramatically altered the selectivity sequence of the rSkM1 channel (NH4 +>K+>Na+≥Li+≈Cs+) and was permeable to divalent cations having the selectivity sequence Ca2+≥Sr2+>Mg2+>Ba2+. Sulfhydryl modification of K1237C, W1531C or D1532C with methanethiosulfonate derivatives that introduce a positively charged ammonium group, large trimethylammonium moiety, or a negatively charged sulfonate group within the pore was ineffective in restoring Na+ selectivity to these channels. Selectivity of D1532C mutants could be largely restored by increasing extracellular pH suggesting altering the ionized state at this position influences selectivity. These data suggest that K1237 in domain III and W1531, D1532, and G1533 in domain IV play a critical role in determining the ionic selectivity of the Na+ channel.  相似文献   

14.

Background

Cardiomyocytes located at the ischemic border zone of infarcted ventricle are accompanied by redistribution of gap junctions, which mediate electrical transmission between cardiomyocytes. This ischemic border zone provides an arrhythmogenic substrate. It was also shown that sodium (Na+) channels are redistributed within myocytes located in the ischemic border zone. However, the roles of the subcellular redistribution of Na+ channels in the arrhythmogenicity under ischemia remain unclear.

Methods

Computer simulations of excitation conduction were performed in a myofiber model incorporating both subcellular Na+ channel redistribution and the electric field mechanism, taking into account the intercellular cleft potentials.

Results

We found in the myofiber model that the subcellular redistribution of the Na+ channels under myocardial ischemia, decreasing in Na+ channel expression of the lateral cell membrane of each myocyte, decreased the tissue excitability, resulting in conduction slowing even without any ischemia-related electrophysiological change. The conventional model (i.e., without the electric field mechanism) did not reproduce the conduction slowing caused by the subcellular Na+ channel redistribution. Furthermore, Na+ channel blockade with the coexistence of a non-ischemic zone with an ischemic border zone expanded the vulnerable period for reentrant tachyarrhythmias compared to the model without the ischemic border zone. Na+ channel blockade tended to cause unidirectional conduction block at sites near the ischemic border zone. Thus, such a unidirectional conduction block induced by a premature stimulus at sites near the ischemic border zone is associated with the initiation of reentrant tachyarrhythmias.

Conclusions

Proarrhythmia of Na+ channel blockade in patients with old myocardial infarction might be partly attributable to the ischemia-related subcellular Na+ channel redistribution.  相似文献   

15.

Objective

Diabetic retinopathy, a major cause of blindness, is characterized by increased expression of vascular endothelial growth factor (VEGF), leukocyte attachment to the vessel walls and increased vascular permeability. Previous work has shown that reactive oxygen species (ROS) produced by the superoxide generating enzyme NOX2/NADPH oxidase play a crucial role in the vascular pathology. The aim of this work was to identify the cellular sources of the damaging NOX2 activity by studies using bone marrow chimera mice.

Methods

Bone marrow cells were collected from the femurs and tibias of wild type and NOX2 deficient (NOX2-/-) donor mice and injected intravenously into lethally irradiated NOX2-/- and wild type recipients. Following recovery from radiation, mice were rendered diabetic by streptozotocin injections. The following groups of bone marrow chimeras were studied: non-diabetic WT→WT, diabetic WT→WT, diabetic WT→NOX2-/-, diabetic NOX2-/-→WT. After 4 weeks of diabetes, early signs of retinopathy were examined by measuring ROS, expression of VEGF and ICAM-1, leukocyte attachment to the vessel wall and vascular permeability.

Results

The retinas of the diabetic WT→WT chimeras showed significant increases in ROS as compared with the non-diabetic chimeras. These diabetes-induced alterations were correlated with increases in expression of VEGF and ICAM-1, leukocyte adhesion and vascular permeability. Each of these diabetes-induced alterations were significantly attenuated in the diabetic WT→NOX2-/- and NOX2-/-→WT chimera groups (p<0.05).

Conclusion

NOX2-generated ROS produced by both bone marrow-derived cells and resident retinal cells contribute importantly to retinal vascular injury in the diabetic retina. Targeting NOX2 in bone marrow and/or retinal cells may represent a novel therapeutic strategy for the treatment/prevention of vascular injury in the diabetic retina.  相似文献   

16.

Background

HIV controllers (HIC) are rare HIV-1-infected patients who exhibit spontaneous viral control. HIC have high frequency of CD38/HLA-DR+ HIV-specific CD8+ T cells. Here we examined the role of this subset in HIC status.

Materials and Methods

We compared CD38/HLA-DR+ CD8+ T cells with the classical CD38+/HLA-DR+ activated phenotype in terms of 1) their activation status, reflected by CD69, CD25, CD71, CD40 and Ki67 expression, 2) functional parameters: Bcl-2 expression, proliferative capacity, and IFN-γ and IL-2 production, and 3) cytotoxic activity. We also investigated how this particular profile is generated.

Results

Compared to CD38+/HLA-DR+ cells, CD38/HLA-DR+ cells exhibited lower expression of several activation markers, better survival capacity (Bcl-2 MFI, 367 [134–462] vs 638 [307–747], P = 0.001), higher frequency of polyfunctional cells (15% [7%–33%] vs 21% [16%–43%], P = 0.0003), greater proliferative capacity (0-fold [0–2] vs 3-fold [2][11], P = 0.007), and higher cytotoxicity in vitro (7% [3%–11%] vs 13% [6%–22%], P = 0.02). The CD38/HLA-DR+ profile was preferentially generated in response to low viral antigen concentrations.

Conclusions

These data highlight the role of CD38/HLA-DR+ HIV-specific CD8+ T cell cytotoxicity in HIC status and provide insights into the mechanism by which they are generated. Induction of this protective CD8+ subset may be important for vaccine strategies.  相似文献   

17.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

18.

Background

High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA) as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods.

Methods

Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose (18FDG) and sodium fluoride (Na18F) PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing.

Results

Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant) increase in 18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone), yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone); yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups.

Conclusion

PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity.  相似文献   

19.

Background

Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts.

Methods and Findings

A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 µM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR).

Conclusions

These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling.  相似文献   

20.

Objective

We hypothesize that time to initiate care and maturity of a treatment program impact on outcome of severely immuno-compromised patients with higher risk of mortality.

Design

We conducted a retrospective cohort analysis at the Perinatal HIV Research Unit Adult ART clinic, Soweto, South Africa.

Methods

Eligibility criteria for this analysis were: attendance for minimum one visit between August 2004 and August 2010, age >18 years, CD4 count < 50 cells/mm3 and ART-naïve at screening. We followed participants up to one year after ART initiation. We defined years 2004-2007 and 2008-2010 as the early and late eras respectively. Chi-square test and survival analysis methods were used for mortality comparisons between eras.

Results

Of 2357 patients eligible for antiretroviral treatment, 395 (17%) had CD4 counts < 50 cells/mm3 and ART-naïve at screening. Overall 261 (66%) were women. Patients had similar median age (35 vs. 33.5 years, p=0.08), time to HAART initiation (7 days, p=0.18) and baseline CD4 count (20 vs. 23 cells/mm3, p=0.5) between eras. Overall 63 (16%) patients died in their first year of treatment (2 per 100 person-months) and the main cause of death was tuberculosis (n=23, 37%). The proportion of deaths (52/262 vs. 11/133, p=0.003) and time to death from enrolment (logrank p=0.04) were significantly different between eras.

Conclusion

Mortality decreased as the ART program matured in Soweto while time to initiation of treatment remained similar in both eras. Because ART guidelines were consistent during both eras, it is possible that with time, management of patients improved as expertise was gained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号