首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus rhamnosus GG is of general interest as a probiotic. Although L. rhamnosus GG is often used in clinical trials, there are few genetic tools to further determine its mode of action or to develop it as a vehicle for heterologous gene expression in therapy. Therefore, we developed a reproducible, efficient electroporation procedure for L. rhamnosus GG. The best transformation efficiency obtained was 10(4) transformants per microg of DNA. We validated this protocol by tagging L. rhamnosus GG with green fluorescent protein (GFP) using the nisin-controlled expression (NICE) system. Parameters for overexpression were optimized, which allowed expression of gfp in L. rhamnosus GG upon induction with nisin. The GFP+ strain can be used to monitor the survival and behavior of L. rhamnosus GG in vivo. Moreover, implementation of the NICE system as a gene expression switch in L. rhamnosus GG opens up possibilities for improving and expanding the performance of this strain. The GFP-labeled strain was used to demonstrate that L. rhamnosus GG is sensitive to human beta-defensin-2 but not to human beta-defensin-1.  相似文献   

2.
3.
Lactobacillus rhamnosus GG (ATCC 53103) is one of the clinically best-studied probiotic organisms. Moreover, L. rhamnosus GG displays very good in vitro adherence to epithelial cells and mucus. Here, we report that L. rhamnosus GG is able to form biofilms on abiotic surfaces, in contrast to other strains of the Lactobacillus casei group tested under the same conditions. Microtiter plate biofilm assays indicated that in vitro biofilm formation by L. rhamnosus GG is strongly modulated by culture medium factors and conditions related to the gastrointestinal environment, including low pH; high osmolarity; and the presence of bile, mucins, and nondigestible polysaccharides. Additionally, phenotypic analysis of mutants affected in exopolysaccharides (wzb), lipoteichoic acid (dltD), and central metabolism (luxS) showed their relative importance in biofilm formation by L. rhamnosus GG.  相似文献   

4.
5.
Aims:  To develop a strain-specific rapid assay for identification and quantification of Lactobacillus rhamnosus GG in human faecal samples.
Methods and Results:  A unique random amplified polymorphic DNA (RAPD) band of the L. rhamnosus GG strain was isolated and sequenced. Strain-specific polymerase chain reaction (PCR) primers and probes were designed based on the sequence. Quantification was performed by the real-time PCR using a fluorescent resonance energy transfer (FRET) system. The specificity of the assay was tested with DNA isolated from a set of known strains and human faecal samples. The analytical sensitivity of the method for L. rhamnosus GG was about 10 CFU per assay, which corresponds to 105 CFU g−1 of wet faeces.
Conclusions:  Quantitative real-time PCR is a suitable method for strain-specific identification of L. rhamnosus GG in human faecal samples.
Significance and Impact of the Study:  Lactobacillus rhamnosus GG is one of the most studied probiotic strains in clinical trials but still lacks a DNA-based identification method. This study describes a real-time PCR method for strain-specific identification and quantification of L. rhamnosus GG in human faecal samples.  相似文献   

6.
There is increasing scientific and commercial interest in using beneficial microorganisms (i.e., probiotics) to enhance intestinal health. Of the numerous microbial strains examined, Lactobacillus rhamnosus GG has been most extensively studied. Daily intake of L. rhamnosus GG shortens the course of rotavirus infection by mechanisms that have not been fully elucidated. Comparative studies with germfree and conventional rats have shown that the microbial status of an animal influences the intestinal cell kinetics and morphology. The present study was undertaken to study whether establishment of L. rhamnosus GG as a mono-associate in germfree rats influences intestinal cell kinetics and morphology. L. rhamnosus GG was easily established in germfree rats. After 3 days of mono-association, the rate of mitoses in the upper part of the small intestine (jejunum 1) increased as much as 14 and 22% compared to the rates in germfree and conventional counterparts, respectively. The most striking alteration in morphology was an increase in the number of cells in the villi. We hypothesis that the compartmentalized effects of L. rhamnosus GG may represent a reparative event for the mucosa.  相似文献   

7.
Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid.  相似文献   

8.
In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic.  相似文献   

9.
10.
The structure of the extracellular polysaccharide (EPS) from Lactobacillus rhamnosus strain GG has been investigated. In combination with component analysis, NMR spectroscopy shows that the polysaccharide is composed of hexasaccharide repeating units. Sequential information was obtained by two-dimensional (1)H,(1)H-NOESY, and (1)H,(13)C-HMBC NMR techniques. The structure of the repeating unit of the EPS from Lactobacillus rhamnosus strain GG was determined as: [carbohydrate structure: see text]  相似文献   

11.
12.
Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193-17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacilli.  相似文献   

13.
Human intestinal glycoproteins extracted from faeces were used as a model for intestinal mucus to investigate adhesion of pathogenic Escherichia coli and Salmonella strains, and the effect of probiotics on this adhesion. S-fimbriated E. coli expressed relatively high adhesion in the mucus model, but the other tested pathogens adhered less effectively. Probiotic strains Lactobacillus GG and L. rhamnosus LC-705 as well as a L. rhamnosus isolated from human faeces were able to slightly reduce S-fimbria-mediated adhesion. Adhesion of S. typhimurium was significantly inhibited by probiotic L. johnsonii LJ1 and L. casei Shirota. Lactobacillus GG and L. rhamnosus (human isolate) increased the adhesion of S. typhimurium suggesting that the pathogen interacts with the probiotic.  相似文献   

14.
Lactobacilli are lactic acid bacteria that are widespread in the environment, including the human diet and gastrointestinal tract. Some Lactobacillus strains are regarded as probiotics because they exhibit beneficial health effects on their host. In this study, the long-used probiotic strain Lactobacillus rhamnosus 35 was characterized at a molecular level and compared with seven reference strains from the Lactobacillus casei group. Analysis of rrn operon sequences confirmed that L. rhamnosus 35 indeed belongs to the L. rhamnosus species, and both temporal temperature gradient gel electrophoresis and ribotyping showed that it is closer to the probiotic strain L. rhamnosus ATCC 53103 (also known as L. rhamnosus GG) than to the species type strain. In addition, L. casei ATCC 334 gathered in a coherent cluster with L. paracasei type strains, unlike L. casei ATCC 393, which was closer to L. zeae; this is evidence of the lack of relatedness between the two L. casei strains. Further characterization of the eight strains by pulsed-field gel electrophoresis repetitive DNA element-based PCR identified distinct patterns for each strain, whereas two isolates of L. rhamnosus 35 sampled 40 years apart could not be distinguished. By subtractive hybridization using the L. rhamnosus GG genome as a driver, we were able to isolate five L. rhamnosus 35-specific sequences, including two phage-related ones. The primer pairs designed to amplify these five regions allowed us to develop rapid and highly specific PCR-based identification methods for the probiotic strain L. rhamnosus 35.  相似文献   

15.
Lactobacillus rhamnosus is a human commensal with known immunomodulatory properties. To date the mechanism of these immunomodulatory effects is not well understood. To unravel the immunomodulatory signalling mechanism, we investigated the effects of two strains of L. rhamnosus, L. rhamnosus GG and GR-1, in modulating production of tumour necrosis factor-alpha (TNF) in human monocytic cell line THP-1 and mouse macrophages. Live L. rhamnosus GG and GR-1 or their spent culture supernatant induced minuscule amounts of TNF production but large quantities of granulocyte-colony stimulating factor (G-CSF) in macrophages compared with those induced by pathogenic Escherichia coli GR-12 and Enterococcus faecalis. By using neutralizing antibodies and G-CSF receptor knockout mice, we demonstrated that G-CSF secreted from L. rhamnosus GG- and GR-1-exposed macrophages suppressed TNF production induced by E. coli- or lipopolysaccharide-activated macrophages through a paracrine route. The suppression of TNF production by G-CSF was mediated through activation of STAT3 and subsequent inhibition of c-Jun-N-terminal kinases (JNKs). The inhibition of JNK activation required STAT3alpha-mediated de novo protein synthesis. This demonstrates a novel role of G-CSF in L. rhamnosus-triggered anti-inflammatory effects and its mechanism in the suppression of TNF production in macrophages.  相似文献   

16.
17.
AIMS: Probiotic milk-based formulations were spray-dried with various combinations of prebiotic substances in an effort to generate synbiotic powder products. METHODS AND RESULTS: To examine the effect of growth phase and inclusion of a prebiotic substance in the feed media on probiotic viability during spray-drying, Lactobacillus rhamnosus GG was spray-dried in lag, early log and stationary phases of growth in reconstituted skim milk (RSM) (20% w/v) or RSM (10% w/v), polydextrose (PD) (10% w/v) mixture at an outlet temperature of 85-90 degrees C. Stationary phase cultures survived best (31-50%) in both feed media and were the most stable during powder storage at 4-37 degrees C over 8 weeks, with 30-140-fold reductions in cell viability at 37 degrees C in RSM and PD/RSM powders, respectively. Stationary phase Lact. rhamnosus GG was subsequently spray-dried in the presence of the prebiotic inulin in the feed media, composed of RSM (10% w/v) and inulin (10% w/v), and survival following spray-drying was of the order 7.1-43%, while viability losses of 20,000-90,000-fold occurred in these powders after 8 weeks' storage at 37 degrees C. Survival of the Lactobacillus culture after spray-drying in powders produced using PD (20% w/v) or inulin (20% w/v) as the feed media was only 0.011-0.45%. To compare different probiotic lactobacilli during spray-drying, stationary phase Lact. rhamnosus E800 and Lact. salivarius UCC 500 were spray-dried using the same parameters as for Lact. rhamnosus GG in either RSM (20% w/v) or RSM (10% w/v) and PD (10% w/v). Lact. rhamnosus E800 experienced approx. 25-41% survival, yielding powders containing approximately 10(9) CFU g(-1), while Lact. salivarius UCC 500 performed poorly, experiencing over 99% loss in viability during spray-drying in both feed media. In addition to the superior survival of Lact. rhamnosus GG after spray-drying, both strains experienced higher viability losses (570-700-fold) during storage at 37 degrees C over 8 weeks compared with Lact. rhamnosus GG. CONCLUSIONS: Stationary phase cultures were most suitable for the spray-drying process, while lag phase was most susceptible. The presence of the prebiotics PD and inulin did not enhance viability during spray-drying or powder storage. SIGNIFICANCE AND IMPACT OF THE STUDY: High viability (approximately 10(9) CFU g(-1)) powders containing probiotic lactobacilli in combination with prebiotics were developed, which may be useful as functional food ingredients for the manufacture of probiotic foods.  相似文献   

18.
Lactobacillus rhamnosus MTCC 5462 was isolated from infant gastrointestinal flora. The strain exhibited an ability to reduce cholesterol and stimulate immunity. The strain has exhibited positive results in alleviating gastrointestinal discomfort and good potential as a probiotic. We sequenced the whole genome of the strain and compared it to the published genome sequence of Lactobacillus rhamnosus GG (ATCC 53103).  相似文献   

19.
Aim:  To evaluate the physicochemical cell surface and adhesive properties of selected probiotic strains for human use.
Methods and Results:  Probiotic strains, Bifidobacterium longum B6, Lactobacillus acidophilus ADH, Lactobacillus paracasei , Lactobacillus rhamnosus GG, Lactobacillus brevis , Lactobacillus casei , Leuconostoc mesenteroides and Pediococcus acidilactici were tested for the physicochemical properties of cell surfaces and the adhesion abilities against foodborne pathogens. Bif .  longum B6 (53·6%) and Lact .  rhamnosus GG (46·5%) showed the highest hydrophobicity, while the least affinity to xylene was observed in Ped .  acidilactici (10·4%). Bifidobacterium longum B6 showed the strongest coaggregation phenotype with Listeria monocytogenes (53·0%), Shigella boydii (42·0%) and Staphylococcus aureus (45·9%). Lactobacillus rhamnosus GG had the strong binding ability to Caco-2 cells and effectively inhibited the adhesion of L .  monocytogenes , Salmonella Typhimurium, Sh .  boydii and Staph .  aureus to Caco-2 cells. The hydrophobicity was highly correlated with coaggregative abilities and competitive inhibition, suggesting a good relationship between in vitro adhesion and in vivo colonization.
Conclusion:  The results suggest that Bif .  longum B6 and Lact .  rhamnosus GG can be candidate probiotics available for human consumption.
Significance and Impact of the Study:  Because the use of probiotic strains has been more concerned with their beneficial effects in the GI tract, it is essential to examine the potential of probiotic strains based on the physicochemical properties in terms of bacterial-binding and adhesion capabilities.  相似文献   

20.
Probiotics and Antimicrobial Proteins - This study aimed to evaluate the effectiveness of probiotics (Lactobacillus rhamnosus GG), as a preventive measure of antibiotic-associated diarrhea (AAD) in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号