首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.  相似文献   

2.
Here, we demonstrate that ADAMTS9, a highly conserved versican-degrading protease, is required for correct cardiovascular development and adult homeostasis. Analysis of Adamts9+/LacZ adult mice revealed anomalies in the aortic wall, valvulosinus and valve leaflets. Abnormal myocardial projections and ‘spongy’ myocardium consistent with non-compaction of the left ventricle were also found in Adamts9+/LacZ mice. During development, Adamts9 was expressed in derivatives of the Secondary Heart Field, vascular smooth muscle cells in the arterial wall, mesenchymal cells of the valves, and non-myocardial cells of the ventricles, but expression also continued in the adult heart and ascending aorta. Thus, the adult cardiovascular anomalies found in Adamts9+/LacZ hearts could result from subtle developmental alterations in extracellular matrix remodeling or defects in adult homeostasis. The valvular and aortic anomalies of Adamts9+/LacZ hearts were associated with accumulation of versican and a decrease in cleaved versican relative to WT littermates. These data suggest a potentially important role for ADAMTS9 cleavage of versican, or other, as yet undefined substrates in development and allostasis of cardiovascular extracellular matrix. In addition, these studies identify ADAMTS9 as a potential candidate gene for congenital cardiac anomalies. Mouse models of ADAMTS9 deficiency may be useful to study myxomatous valve degeneration.  相似文献   

3.
The cell and its glycosaminoglycan-rich pericellular matrix (PCM) comprise a functional unit. Because modification of PCM influences cell behavior, we investigated molecular mechanisms that regulate PCM volume and composition. In fibroblasts and other cells, aggregates of hyaluronan and versican are found in the PCM. Dermal fibroblasts from Adamts5(-/-) mice, which lack a versican-degrading protease, ADAMTS5, had reduced versican proteolysis, increased PCM, altered cell shape, enhanced α-smooth muscle actin (SMA) expression and increased contractility within three-dimensional collagen gels. The myofibroblast-like phenotype was associated with activation of TGFβ signaling. We tested the hypothesis that fibroblast-myofibroblast transition in Adamts5(-/-) cells resulted from versican accumulation in PCM. First, we noted that versican overexpression in human dermal fibroblasts led to increased SMA expression, enhanced contractility, and increased Smad2 phosphorylation. In contrast, dermal fibroblasts from Vcan haploinsufficient (Vcan(hdf/+)) mice had reduced contractility relative to wild type fibroblasts. Using a genetic approach to directly test if myofibroblast transition in Adamts5(-/-) cells resulted from increased PCM versican content, we generated Adamts5(-/-);Vcan(hdf/+) mice and isolated their dermal fibroblasts for comparison with dermal fibroblasts from Adamts5(-/-) mice. In Adamts5(-/-) fibroblasts, Vcan haploinsufficiency or exogenous ADAMTS5 restored normal fibroblast contractility. These findings demonstrate that altering PCM versican content through proteolytic activity of ADAMTS5 profoundly influenced the dermal fibroblast phenotype and may regulate a phenotypic continuum between the fibroblast and its alter ego, the myofibroblast. We propose that a physiological function of ADAMTS5 in dermal fibroblasts is to maintain optimal versican content and PCM volume by continually trimming versican in hyaluronan-versican aggregates.  相似文献   

4.
The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. β-Galactosidase (β-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5–15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.  相似文献   

5.
We have identified a role for two evolutionarily related, secreted metalloproteases of the ADAMTS family, ADAMTS20 and ADAMTS9, in palatogenesis. Adamts20 mutations cause the mouse white-spotting mutant belted (bt), whereas Adamts9 is essential for survival beyond 7.5 days gestation (E7.5). Functional overlap of Adamts9 with Adamts20 was identified using Adamts9(+/-);bt/bt mice, which have a fully penetrant cleft palate. Palate closure was delayed, although eventually completed, in both Adamts9(+/-);bt/+ and bt/bt mice, demonstrating cooperation of these genes. Adamts20 is expressed in palatal mesenchyme, whereas Adamts9 is expressed exclusively in palate microvascular endothelium. Palatal shelves isolated from Adamts9(+/-);bt/bt mice fused in culture, suggesting an intact epithelial TGFβ3 signaling pathway. Cleft palate resulted from a temporally specific delay in palatal shelf elevation and growth towards the midline. Mesenchyme of Adamts9(+/-);bt/bt palatal shelves had reduced cell proliferation, a lower cell density and decreased processing of versican (VCAN), an extracellular matrix (ECM) proteoglycan and ADAMTS9/20 substrate, from E13.5 to E14.5. Vcan haploinsufficiency led to greater penetrance of cleft palate in bt mice, with a similar defect in palatal shelf extension as Adamts9(+/-);bt/bt mice. Cell density was normal in bt/bt;Vcan(hdf)(/+) mice, consistent with reduced total intact versican in ECM, but impaired proliferation persisted in palate mesenchyme, suggesting that ADAMTS-cleaved versican is required for cell proliferation. These findings support a model in which cooperative versican proteolysis by ADAMTS9 in vascular endothelium and by ADAMTS20 in palate mesenchyme drives palatal shelf sculpting and extension.  相似文献   

6.
ADAMTS9 is a secreted, cell-surface-binding metalloprotease that cleaves the proteoglycans versican and aggrecan. Unlike most precursor proteins, the ADAMTS9 zymogen (pro-ADAMTS9) is resistant to intracellular processing. Instead, pro-ADAMTS9 is processed by furin at the cell surface. Here, we investigated the role of the ADAMTS9 propeptide in regulating its secretion and proteolytic activity. Removal of the propeptide abrogated secretion of the ADAMTS9 catalytic domain, and secretion was inefficiently restored by expression of the propeptide in trans. Substitution of Ala for Asn residues within each of three consensus N-linked glycosylation sites in the propeptide abrogated ADAMTS9 secretion. Thus, the propeptide is an intramolecular chaperone whose glycosylation is critical for secretion of the mature enzyme. In addition to two previously identified furin-processing sites (Arg74 downward arrow and Arg287 downward arrow) the ADAMTS9 propeptide was also furin-processed at Arg209. Substitution of Ala for Arg74, Arg209, and Arg287 resulted in secretion of an unprocessed zymogen. Unexpectedly, versican incubated with cells expressing this pro-ADAMTS9 was processed to a greater extent than when incubated with cells expressing wild-type, furin-processable ADAMTS9. Moreover, cells and medium treated with the proprotein convertase inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone had greater versican-cleaving activity than untreated cells. Following furin processing of pro-ADAMTS9, propeptide fragments maintained a non-covalent association with the catalytic domain. Collectively, these observations suggest that, unlike other metalloproteases, furin processing of the ADAMTS9 propeptide reduces its catalytic activity. Thus, the propeptide is a key functional domain of ADAMTS9, mediating an unusual regulatory mechanism that may have evolved to ensure maximal activity of this protease at the cell surface.  相似文献   

7.
The aggrecanase ADAMTS5 (A Disintegrin and Metalloproteinase with ThromboSpondin type 1 motifs, member 5) and the cleavage of its substrate versican have been implicated in the development of heart valves. Furthermore, ADAMTS5 deficiency was shown to protect against diet‐induced obesity, a known risk factor for cardiovascular disease. Therefore, in this study, we investigated the potential role of ADAMTS5 in cardiac function using ADAMTS5‐deficient (Adamts5?/?) mice and their wild‐type (Adamts5+/+) counterparts exposed to a standard‐fat or a high‐fat diet (HFD). Eight‐weeks‐old Adamts5?/? and Adamts5+/+ mice were exposed to each diet for 15 weeks. Cardiac function and electrophysiology were analyzed by transthoracic echocardiogram and electrocardiogram at the end of the study. Cleavage of versican, as detected by the appearance of the DPEEAE neo‐epitope on western blotting with protein extracts, was defective in the heart of HFD‐treated Adamts5?/? as compared with Adamts5+/+ mice. ADAMTS5 deficiency led to statistically significant increases in diastolic posterior wall thickness (0.94 ± 0.023 vs. 0.82 ± 0.036 mm; P = 0.0056) and left ventricle volume (47 ± 4.5 vs. 31 ± 2.5 μL; P = 0.0043) in comparison to Adamts5+/+ mice, but only in animals on a HFD. Cardiac function parameters such as ejection fraction, fractional shortening, and stroke volume were unaffected by ADAMTS5 deficiency or diet. Electrocardiogram analysis revealed no ADAMTS5‐specific changes in either diet group. Thus, in the absence of ADAMTS5, cleavage of versican in the cardiac extracellular matrix is impaired, but cardiac function, even upon exposure to a HFD, is not markedly affected.  相似文献   

8.
Proteolysis of the Glu441-Ala442 bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu441 is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu441-Ala442 site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser507 and Ser525 as essential for processing of the Glu441-Ala442 bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser507 and Ser525 is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu441 and an antibody to a peptide spanning Thr432-Gly445 (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu441-Ala442. V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu441. Therefore, versican cleavage can be inhibited substantially by mutation of Glu441, Ser507, and Ser525 or by an antibody to the region of the scissile bond.  相似文献   

9.

Background

ADAMTS13 is the physiological von Willebrand factor (VWF)-cleaving protease. The aim of this study was to examine ADAMTS13 expression in kidneys from ADAMTS13 wild-type (Adamts13+/+) and deficient (Adamts13−/−) mice and to investigate the expression pattern and bioactivity in human glomerular endothelial cells.

Methodology/Principal Findings

Immunohistochemistry was performed on kidney sections from ADAMTS13 wild-type and ADAMTS13-deficient mice. Phenotypic differences were examined by ultramorphology. ADAMTS13 expression in human glomerular endothelial cells and dermal microvascular endothelial cells was investigated by real-time PCR, flow cytometry, immunofluorescence and immunoblotting. VWF cleavage was demonstrated by multimer structure analysis and immunoblotting. ADAMTS13 was demonstrated in glomerular endothelial cells in Adamts13+/+ mice but no staining was visible in tissue from Adamts13−/− mice. Thickening of glomerular capillaries with platelet deposition on the vessel wall was detected in Adamts13−/− mice. ADAMTS13 mRNA and protein were detected in both human endothelial cells and the protease was secreted. ADAMTS13 activity was demonstrated in glomerular endothelial cells as cleavage of VWF.

Conclusions/Significance

Glomerular endothelial cells express and secrete ADAMTS13. The proteolytic activity could have a protective effect preventing deposition of platelets along capillary lumina under the conditions of high shear stress present in glomerular capillaries.  相似文献   

10.
ADAMTS5 (aggrecanase-2), a key metalloprotease mediating cartilage destruction in arthritis, is synthesized as a zymogen, proADAMTS5. We report a detailed characterization of the propeptide excision mechanism and demonstrate that it is a major regulatory step with unusual characteristics. Using furin-deficient cells and a furin inhibitor, we found that proADAMTS5 was processed by proprotein convertases, specifically furin and PC7, but not PC6B. Mutagenesis of three sites containing basic residues within the ADAMTS5 propeptide (RRR(46), RRR(69) and RRRRR(261)) suggested that proADAMTS5 processing occurs after Arg(261). That furin processing was essential for ADAMTS5 activity was illustrated using the known ADAMTS5 substrate aggrecan, as well as a new substrate, versican, an important regulatory proteoglycan during mammalian development. When compared to other ADAMTS proteases, proADAMTS5 processing has several distinct features. In contrast to ADAMTS1, whose furin processing products were clearly present intracellularly, cleaved ADAMTS5 propeptide and mature ADAMTS5 were found exclusively in the conditioned medium. Despite attempts to enhance detection of intracellular proADAMTS5 processing, such as by immunoprecipitation of total ADAMTS5, overexpression of furin, and secretion blockade by monensin, neither processed ADAMTS5 propeptide nor the mature enzyme were found intracellularly, which was strongly suggestive of extracellular processing. Extracellular ADAMTS5 processing was further supported by activation of proADAMTS5 added exogenously to HEK293 cells stably expressing furin. Unlike proADAMTS9, which is processed by furin at the cell-surface, to which it is bound, ADAMTS5 does not bind the cell-surface. Thus, the propeptide processing mechanism of ADAMTS5 has several points of distinction from those of other ADAMTS proteases, which may have considerable significance in the context of osteoarthritis.  相似文献   

11.
In fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease.  相似文献   

12.
The chondroitin sulfate-bearing proteoglycans, also known as lecticans, are a major component of the extracellular matrix (ECM) in the central nervous system and regulate neural plasticity. Growing evidence indicates that endogenous, extracellular metalloproteinases that cleave lecticans mediate neural plasticity by altering the structure of ECM aggregates. The bulk of this in vivo data examined the matrix metalloproteinases, but another metalloproteinase family that cleaves lecticans, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), modulates structural plasticity in vitro, although few in vivo studies have tested this concept. Thus, the purpose of this study was to examine the neurological phenotype of a mouse deficient in ADAMTS1. Adamts1 mRNA was absent in the ADAMTS1 null mouse frontal cortex, but there was no change in the abundance or proteolytic processing of the prominent lecticans brevican and versican V2. However, there was a marked increase in the perinatal lectican neurocan in juvenile ADAMTS1 null female frontal cortex. More prominently, there were declines in synaptic protein levels in the ADAMTS1 null female, but not male, frontal cortex beginning at postnatal day 28. These synaptic marker declines did not affect learning or memory in the adult female ADAMTS1 null mice when tested with the radial-arm water maze. These results indicate that in vivo Adamts1 knockout leads to sexual dimorphism in frontal cortex synaptic protein levels. Since changes in lectican abundance and proteolytic processing did not accompany the synaptic protein declines, ADAMTS1 may play a nonproteolytic role in regulating neural plasticity.  相似文献   

13.
ADAMTS20 (Adisintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kit(tm1Alf)/+ and bt/bt;Kitl(Sl)/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases.  相似文献   

14.
We describe the discovery and characterization of ADAMTS10, a novel metalloprotease encoded by a locus on human chromosome 19 and mouse chromosome 17. ADAMTS10 has the typical modular organization of the ADAMTS family, with five thrombospondin type 1 repeats and a cysteine-rich PLAC (protease and lacunin) domain at the carboxyl terminus. Its domain organization and primary structure is similar to a novel long form of ADAMTS6. In contrast to many ADAMTS proteases, ADAMTS10 is widely expressed in adult tissues and throughout mouse embryo development. In situ hybridization analysis showed widespread expression of Adamts10 in the mouse embryo until 12.5 days of gestation, after which it is then expressed in a more restricted fashion, with especially strong expression in developing lung, bone, and craniofacial region. Mesenchymal, not epithelial, expression in the developing lung, kidney, gonad, salivary gland, and gastrointestinal tract is a consistent feature of Adamts10 regulation. N-terminal sequencing and treatment with decanoyl-Arg-Val-Lys-Arg-chloromethylketone indicate that the ADAMTS10 zymogen is processed by a subtilisin-like proprotein convertase at two sites (Arg64/Gly and Arg233/Ser). The widespread expression of ADAMTS10 suggests that furin, a ubiquitously expressed proprotein convertase, is the likely processing enzyme. ADAMTS10 expressed in HEK293F and COS-1 cells is N-glycosylated and is secreted into the medium, as well as sequestered at the cell surface and extracellular matrix, as demonstrated by cell surface biotinylation and immunolocalization in nonpermeabilized cells. ADAMTS10 is a functional metalloprotease as demonstrated by cleavage of alpha2-macroglobulin, although physiological substrates are presently unknown.  相似文献   

15.
16.
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.  相似文献   

17.
The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP.  相似文献   

18.
Summary A disintegrin and metalloprotease with thrombospondin type 1 motifs (ADAMTS) is a family of extracellular proteases and implicated in cleaving proteoglycans, such as aggrecan, versican and brevican. No information is available about expression or localization of these ADAMTSs in teeth. Versican is a large chondroitin sulfate proteoglycan that is present in a variety of connective tissue including dental pulp, dentin, cementum and periodontal ligaments. The present study was designed to investigate expression of ADAMTSs and versican during rat tooth eruption. Rat maxillary first molars in weeks 1, 2, 3, 4 and 6 were examined. The mRNA expression of ADAMTS1, ADAMTS4, ADAMTS5 and versican was localized using in situ hybridization. ADAMTS1, ADAMTS4, ADAMTS5 and versican were expressed in dental pulp cells, odontoblasts, cementoblasts, cementocytes, periodontal ligament cells, osteoblasts and osteocytes. The temporal and spatial expression pattern in these cellular phenotypes was comparable among ADAMTSs and versican. The present study suggests that dental pulp cells, odontoblasts, cementoblasts, cementocytes, periodontal ligament cells, osteoblasts and osteocytes may be involved in both production and degradation of versican with secreting ADAMTS1, ADAMTS4 and ADAMTS5.  相似文献   

19.
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs 9 (ADAMTS9) is a highly conserved metalloprotease that has been identified as a tumor suppressor gene and is required for normal mouse development. The secreted ADAMTS9 zymogen undergoes proteolytic excision of its N-terminal propeptide by the proprotein convertase furin. However, in contrast to other metalloproteases, propeptide excision occurs at the cell surface and leads to decreased activity of the zymogen. Here, we investigated the potential cellular mechanisms regulating ADAMTS9 biosynthesis and cell-surface processing by analysis of molecular complexes formed by a construct containing the propeptide and catalytic domain of pro-ADAMTS9 (Pro-Cat) in HEK293F cells. Cross-linking of cellular proteins bound to Pro-Cat followed by mass spectrometric analysis identified UDP-glucose:glycoprotein glucosyltransferase I, heat shock protein gp96 (GRP94), BiP (GRP78), and ERdj3 (Hsp40 homolog) as associated proteins. gp96 and BiP were present at the cell surface in an immunoprecipitable complex with pro-ADAMTS9 and furin. Treatment with geldanamycin, an inhibitor of the HSP90α family (including gp96), led to decreased furin processing of pro-ADAMTS9 and accumulation of the unprocessed pro-ADAMTS9 at the cell surface. gp96 siRNA down-regulated the levels of cell-surface pro-ADAMTS9 and furin, whereas the levels of cell-surface pro-ADAMTS9, but not of cell-surface furin, were decreased upon treatment with BiP siRNA. These data identify for the first time the cellular chaperones associated with secretion of an ADAMTS protease and suggest a role for gp96 in modulating pro-ADAMTS9 processing.  相似文献   

20.
Mutations in ADAMTS2, a procollagen amino-propeptidase, cause severe skin fragility, designated as dermatosparaxis in animals, and a subtype of the Ehlers-Danlos syndrome (dermatosparactic type or VIIC) in humans. Not all collagen-rich tissues are affected to the same degree, which suggests compensation by the ADAMTS2 homologs ADAMTS3 and ADAMTS14. In situ hybridization of Adamts2, Adamts3 and Adamts14, and of the genes encoding the major fibrillar collagens, Col1a1, Col2a1 and Col3a1, during mouse embryogenesis, demonstrated distinct tissue-specific, overlapping expression patterns of the protease and substrate genes. Adamts3, but not Adamts2 or Adamts14, was co-expressed with Col2a1 in cartilage throughout development, and with Col1a1 in bone and musculotendinous tissues. ADAMTS3 induced procollagen I processing in dermatosparactic fibroblasts, suggesting a role in procollagen I processing during musculoskeletal development. Adamts2, but not Adamts3 or Adamts14, was co-expressed with Col3a1 in many tissues including the lungs and aorta, and Adamts2(-/-) mice showed widespread defects in procollagen III processing. Adamts2(-/-) mice had abnormal lungs, characterized by a decreased parenchymal density. However, the aorta and collagen fibrils in the aortic wall appeared normal. Although Adamts14 lacked developmental tissue-specific expression, it was co-expressed with Adamts2 in mature dermis, which possibly explains the presence of some processed skin procollagen in dermatosparaxis. The data show how evolutionarily related proteases with similar substrate preferences may have distinct biological roles owing to tissue-specific gene expression, and provide insights into collagen biosynthesis and the pathobiology of dermatosparaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号