首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seagrasses form temporally dynamic, fragmented subtidal landscapes in which both large- and small-scale habitat structure may influence faunal survival and abundance. We compared the relative influences of seagrass (Zostera marina L.) habitat fragmentation (patch size and isolation) and structural complexity (shoot density) on juvenile blue crab (Callinectes sapidus Rathbun) survival and density in a Chesapeake Bay seagrass meadow. We tethered crabs to measure relative survival, suction sampled for crabs to measure density, and took seagrass cores to measure shoot density in patches spanning six orders of magnitude (ca. 0.25-30,000 m2) both before (June) and after (September) seasonally predictable decreases in seagrass structural complexity and increases in seagrass fragmentation. We also determined if juvenile blue crab density and seagrass shoot density varied between the edge and the interior of patches. In June, juvenile blue crab survival was not linearly related to seagrass patch size or to shoot density, but was significantly lower in patches separated by large expanses of unvegetated sediment (isolated patches) than in patches separated by <1 m of unvegetated sediment (connected patches). In September, crab survival was inversely correlated with seagrass shoot density. This inverse correlation was likely due to density-dependent predation by juvenile conspecifics (i.e. cannibalism); juvenile blue crab density increased with seagrass shoot density, was inversely correlated with crab survival, and was greater in September than in June. Shoot density effects on predator behavior and on conspecific density also likely caused crab survival to be lower in isolated patches than in connected patches in June. Isolated patches were either large (patch area >3000 m2) or very small (<1 m2). Large isolated patches had the lowest shoot densities, which may have allowed predators to easily find tethered crabs. Very small isolated patches had the highest shoot densities and consequently a high abundance of predators (=juvenile conspecifics). Though shoot density did not differ between the edge and the interior of patches, crabs were more abundant in the interior of patches than at the edge. These results indicate that seagrass fragmentation does not have an overriding influence on juvenile blue crab survival and density, and that crab cannibalism and seasonal changes in landscape structure may influence relationships between crab survival and seagrass habitat structure. Habitat fragmentation, structural complexity, faunal density, and time all must be incorporated into future studies on faunal survival in seagrass landscapes.  相似文献   

2.
Paulino  João  Granadeiro  José Pedro  Henriques  Mohamed  Belo  João  Catry  Teresa 《Hydrobiologia》2021,848(17):3905-3919

The burrowing activity of fiddler crabs inhabiting intertidal flats creates visually distinct patches within these habitats. However, differences in the composition and abundance of shorebirds and their macroinvertebrate prey between areas inhabited or not by crabs are yet to be studied. Here, we compare the macroinvertebrate and shorebird assemblages in low and high crab density areas in the intertidal flats of the Bijagos archipelago, Guinea-Bissau. High crab density areas are associated with lower richness and densities of macroinvertebrates. Shorebird assemblages were also less rich at high crab density areas and the differences in species composition occurred according to prey type preferences. Fiddler crab density was the most important variable explaining macroinvertebrate abundance, after accounting for the effects of fine fraction of sediment and distance to coast. Nonetheless, a controlled experimental setup would be required to attribute differences found to the engineering activity of fiddler crabs rather than other unaccounted habitat features. Our findings suggest that crab patches should be taken into account when assessing the distribution and abundance of macroinvertebrates and shorebirds in intertidal areas. Since low and high crab density areas differ markedly in terms of shorebird carrying capacity, monitoring variations in their extent will be important to interpret past and present population trends.

  相似文献   

3.
Here we address the question of whether the presence of the burrowing crabs Chasmagnathus granulatus affects small- and large-scale habitat use by migrant shorebirds. This crab is the dominant species in soft bare sediments and vegetated intertidal areas along the SW Atlantic estuaries (southern Brazil 28°S to the northern Argentinean Patagonia 42°S). They generate very extensive burrow beds in soft bottom intertidal areas. Our information shows that this burrowing crab affects the small-scale habitat use by shorebirds, given that shorebirds never walk through the funnel-shaped entrances of burrows. Given that crab burrow entrances occupy up to 40% of the intertidal area, there is a large decrease of available shorebird habitat in crab beds, restricting their activity to the spaces between the burrows. The southern migratory shorebird Charadrius falklandicus maximize the use of these areas by foraging closer to the burrows than the other bird species. Neotropical migrants, such as Calidris fuscicollis, Pluvialis squatarola and Tringa melanoleuca, used foraging paths that tended to maximize the distance from burrows, especially the distance to larger burrows. A field experiment showed that this was not necessarily due to a decrease in the availability of polychaetes near the crab burrows. A combination of landscape measurements and satellite images showed that crab beds covered up to 40% of the intertidal area of the Mar Chiquita coastal lagoon (37°40′S, Argentina), and nearly 100% of the intertidal area of the Bahia Blanca estuary (38°48′-39°25′S, Argentina). These two estuaries are located along the migratory flyway of Neotropical migratory shorebirds, but the Bahia Blanca estuary (area∼110,000 ha) shows a much lower shorebird diversity than Mar Chiquita (area∼4500 ha). The most common species in Bahia Blanca is the two-banded plover C. falklandicus, the species least affected by crabs at Mar Chiquita and which prefers to use high-density crab areas as foraging sites. The oystercatcher Haematopus palliatus was also most abundant in high-density crab areas, but they used these areas for resting. The abundances of preys varied during the study period and between the crab density areas, indicating that the use of these areas by birds is independent of crab density. However, burrowing crabs affect the depth distribution of polychaete and thus their availability to shorebirds. We suggest that this shorebirds-burrowing organism interaction could be generalized for other intertidal estuarine habitats.  相似文献   

4.
鲎具有极高的经济价值和科研意义。近年来由于过度捕捞和栖息地受损等原因,亚洲鲎种群数量正急剧下降。鲎漫长的生命周期使得鲎资源的保护和增殖迫在眉睫。生态位模型已经广泛应用于物种的潜在地理分布预测。基于实地调研数据和公开发表的北部湾中国海域中国鲎和圆尾鲎地理分布数据,运用MAXENT模型得到中国鲎和圆尾鲎在广西北部湾(中国部分)的栖息地适宜度指数(Habitat suitability index, HSI),确定了这两种稚鲎在北部湾中国海域潜在适生区。模型分析结果表明,潮间带坡度和地形指数是影响中国鲎分布的主要环境因子,而潮间带底质的有机物含量和植被指数是影响圆尾鲎分布的主要环境因子,根据研究结果建议在两种稚鲎适生区建立保护区,进行人工放流稚鲎,加强对海草和红树林的生态建设,进而促进鲎资源种群恢复和发展。  相似文献   

5.
Shell selection behaviour and spatial distribution of three hermit crab species, Diogenes avarus, D. karwarensis, and Areopaguristes perspicax, were studied at six sites along the intertidal zones of Hormuz Island in the Persian Gulf. 1025 specimens were collected occupying altogether 31 shell species (D. avarus 28 species, A. perspicax 22 species, and D. karwarensis 8 species). Diogenes avarus was found to be by far the most abundant of these three crab species, and Cerithidea cingulata the dominant shell occupied by these hermit crabs. The distribution of the hermit crabs significantly varied (p<0.05) among the sites. The number and the wide diversity of shells occupied in different sites show that the main factor in shell selection for these hermit crabs is the abundance and distribution of shell species in the field.  相似文献   

6.
We studied the relationships between the habitat use of migratory shorebirds and the spatial distributions of the Southwestern Atlantic Fiddler Crab Uca uruguayensis , polychaetes, sediment characteristics and tidal levels in the Río de La Plata estuary, Argentina, where U. uruguayensis is one of the most important intertidal species. Crabs have a well-defined patchy distribution that is segregated spatially from that of polychaetes. Crab density on the surface varied across the tidal cycle, reaching maximum values during low tide. Polychaete density decreased with depth but showed no change through the tidal cycle; however, given that sediment penetrability did change during the same period, their availability to probing shorebirds is expected to change. Habitat use by shorebirds followed the spatial distribution of prey; shorebirds that foraged on polychaetes (White-rumped Sandpiper Calidris fuscicollis , Two-banded Plover Charadrius falklandicus and Hudsonian Godwit Limosa haemastica ) focused their attention on the areas with the highest densities of polychaetes, whereas species that preyed mostly on crabs (Ruddy Turnstone Arenaria interpres , Whimbrel Numenius phaeopus and Grey Plover Pluvialis squatarola ) predominantly used areas with crabs. This segregation occurred particularly during low tide, a period in which polychaetes became fully available. Results show that the spatial and temporal heterogeneity of mudflats in relation to the types and availability of prey has a strong effect on shorebird habitat use.  相似文献   

7.
Animals living on upper intertidal mudflats experience habitat desiccation during neap tides when water does not flood the habitat. Individuals of the manicure crab Cleistostoma dilatatum construct cone-shaped towers at the entrance of their burrows, in which they remain during neap tides. These towers are the tallest known structures compared to body size built by crabs living on intertidal flats. The frequency of tower construction followed semilunar tidal cycles with most building done prior to neap tides when few crabs were active on the mudflat surface. Bigger crabs tended to make taller and wider towers with a wider pinhole on the top. These towers may regulate the microclimate in burrows.  相似文献   

8.
Although the impact of plant invasions on benthic communities, especially burrowing crabs, has received increasing attention, the results from past studies are mixed. The exotic plant Spartina alterniflora has become the most abundant species in the salt marshes of the Yangtze River estuary since it was first found just over a decade ago, but its effects on crabs in the salt marshes is largely unknown. To examine whether the invasions of this exotic plant affected native crabs, we compared the biomass and abundance of the dominant burrowing crab Sesarma dehaani in an exotic Spartina marsh, native Phragmites australis marsh and mudflats of the Yangtze River estuary, China. To explain the differences of S. dehaani populations between different habitats, feeding preference of S. dehaani for Spartina and Phragmites was investigated. Results showed crab abundance and biomass in the Spartina marsh were significantly greater than those in the Phragmites marsh and mudflats. Soil water content and plant community characteristics in the Spartina marsh also significantly differed in the Phragmites marsh and mudflats. Moreover, the feeding preference experiment showed that crabs consumed Spartina more than twice as much as Phragmites. In summary, this study showed that Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.  相似文献   

9.
The influence of biotic interactions in structuring macroinfaunal communities of exposed sandy beaches, an unstable habitat characterized by strong physical forces, is generally considered negligible. We investigated the hypothesis that competitive interactions during burrowing could potentially affect the intertidal distribution and abundance of macroinfaunal animals of sandy beaches using two species of invertebrates, a hippid crab, Emerita analoga, and a bivalve, Mesodesma donacium, common along the coast of Chile. Spatial overlap in the intertidal distributions of these species was dynamic, varying with abundance, location, time of year and tide. Highest density zones of each species were often distinctly separated at low tide and spatial overlap in their distributions decreased significantly with increasing density, suggesting density dependence of the interactions. Negative relationships between densities of the two species at the smallest spatial scale examined also suggested active interactions among individuals. Over a tidal cycle, peak densities of the two species overlapped suggesting that interactions could occur frequently. Burrowing performance of E. analoga varied between size classes in three experimental densities of clams (5, 10 and 15 clams 0.008 m-2) and in controls with no clams. Burrowing times of large crabs were significantly longer (~twofold) in all densities of clams than in controls, while those of small crabs did not differ significantly among treatments and controls. Large crabs also displaced clams from the sand while burrowing suggesting that two mechanisms of direct interference can occur, both of which could increase exposure of individuals involved to active swash and transport across or along the beach with potentially negative consequences. Our results suggest that competitive interactions capable of affecting zonation and population and community biology on a number of scales can occur among burrowing macroinfauna on exposed sandy beaches. Those interactions could be more ecologically significant than previously appreciated and may contribute to patterns observed in community structure and zonation on sandy beaches. Our results illustrate the potential importance of negative biological interactions in a physically stressful environment.  相似文献   

10.
Biophysical models are used to predict the spatial distributions of organisms. Nevertheless, understanding factors influencing the temporal distributions of animals may often be additionally required. It is expected that intertidal macrofauna of the wet–dry tropics face a multitude of temporal challenges because there is not only seasonal drying but also variation in surface moisture over the circatidal cycle. Activities of fiddler crabs (Uca spp.) depend on adequate surface moisture being available for feeding and respiration. A recent study monitored crab abundance during spring tides and found that one Uca species in the mangroves of Darwin Harbour, Australia, U. flammula, is most abundant in the wet season, while another, U. elegans, is most abundant in the dry season. We hypothesized here that these seemingly contradictory abundance patterns are driven by temporal variation in the availability of soil moisture within each species habitat. We thus monitored crab abundance and measured soil moisture content across four types of habitat (low gap centres, low gap edges, mid‐height gap centres and high gap centres) seasonally and across the circatidal cycle. We found that crab abundance and soil moisture both varied over time among habitat types. We used a log‐linear model to show that habitat type influenced soil moisture and this in turn influenced crab abundance. Sampling across the circatidal cycle showed that U. flammula was more abundant in the wet season, as reported previously, while the abundance of U. elegans did not vary between seasons. Our model suggested that U. elegans ‘makes up for lost time’ in the dry season by undertaking all activities during spring tide low water as only at this time is the substratum moist enough for feeding and respiration. We highlight the importance of measuring multiple variables across habitats over small and large scales when assessing temporal abundance patterns of intertidal tropical organisms.  相似文献   

11.

The European green crab (Carcinus maenas) is invasive on the West coast of North America, but the ecological consequences of this invasion remain poorly understood. Comparative functional response analysis has arisen as a method of elucidating ecological consequences of invasive species by comparing the impact of these species to native analogues. Through comparative functional response experiments of green crabs and native red rock crabs (Cancer productus) we found that green crab predation increased asymptotically (Type II functional response) when fed increasing densities of Pacific oysters (Magallana gigas), while red rock crab predation displayed a sigmoidal (Type III) response. At high oyster densities red rock crabs consume more Pacific oysters than green crabs do, due to their reduced handling time, though green crabs consume more Pacific oysters relative to their size than red rock crabs. However, compared to red rock crabs, green crabs consume more oysters at low prey densities, which implies that they have a larger, potentially destabilizing impact on low densities of Pacific oysters. As green crabs continue to spread across the West coast of North America, Pacific oysters will face increased predation pressure. Our results show the advantage of using functional response analysis to compare density dependent predation between an invasive species and a native species to predict the ecological consequences of invasions.

  相似文献   

12.
In this study we used pinfish (Lagodon rhomboides) in field experiments to examine linkages between intertidal saltmarsh and adjacent subtidal habitats. Pinfish are more than twice as abundant in intertidal marshes adjacent to seagrass beds than in those adjacent to the unvegetated subtidal bottom. Movement of pinfish between the marsh edge and the adjacent subtidal habitat was greater for fish captured in areas with both intertidal and subtidal vegetation than in those with intertidal vegetation and adjacent unvegetated mudflats. This movement provides an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa. Pinfish held in enclosures with both intertidal and subtidal vegetation were, on average, approximately 90% heavier than fish held in enclosures with intertidal vegetation and unvegetated subtidal bottom. Because saltmarshes and seagrass beds contribute to the production of living marine resources, active measures are being taken to preserve and restore these habitats. The results from this study have direct application to decisions concerning site selection and optimal spatial proximity of saltmarsh and seagrass habitats in the planning of restoration and mitigation projects. To maximize secondary production and utilization of intertidal marshes, managers may opt to restore and/or preserve marshes adjacent to subtidal seagrass beds. Received: 31 May 1996 / Accepted: 23 October 1996  相似文献   

13.
Abstract Broadscale habitat use by Eastern Curlews (Numenius madagascariensis) in their non‐breeding range in eastern Australia was assessed using low tide surveys on feeding grounds, where 60 skilled volunteers made repeated counts of the birds on intertidal flats, across 41% (9500 ha) of the intertidal habitat within Moreton Bay, Australia. We analysed 32 defined sections of intertidal flat, of roughly equal area (mostly 200–400 ha), which varied greatly in their curlew density (2–47 birds per 100 ha) and also in substrate and other environmental features. Sites with the least resistant substrates had densities three times those with the most resistant substrates. Of 10 environmental characteristics measured for each site, substrate resistance was the best predictor of curlew density (r2 = 0.45). Characteristics that were poor predictors included distance to the nearest roost, level of human disturbance and distance to urban settlement. For a finer‐scale assessment, microhabitat use and feeding behaviour were recorded during low tide within 12 intertidal flats, which varied in size (23–97 ha), substrate, topography and other features. Across all flats, curlews strongly preferred to feed relatively close (0–50 m) to the low‐water line. They fed on a variety of substrates (including sand, sandy‐mud, mud and seagrass) in broadly similar proportions to their occurrence in the habitat. There was a statistically significant preference for sand, although its magnitude was not strong. These results indicate that curlews select habitat most strongly at a between‐flat rather than within‐flat scale.  相似文献   

14.
In the intertidal mud crabMacrophthalmus japonicus, most large crabs occurred in the upper sandy areas. Mechanisms of the size-dependent distribution were interpreted experimentally. In the lower muddy area, food was more abundant and crab density was much higher than in the upper area. Under the high density conditions, interaction among large crabs became severe and more large crabs abandoned their burrows. In the experiment on burrowing-site selection, large crabs burrowed only in the muddy side under the low density, but also in the sandy side under high density conditions. The burrowing in the upper sandy area may be advantageous for large crabs, though food availability is lower, because of less competition and higher survivorship under the low crab density.  相似文献   

15.
Sedimentation resulting from riparian deforestation has a wide range of detrimental effects on aquatic biodiversity, but predicting the full consequences of such disturbances requires an understanding of the ecosystem’s key functional components. We investigated the ecology and response to sedimentation of the diverse, endemic freshwater crabs of Lake Tanganyika, which may occupy important positions in littoral foodwebs. Our surveys revealed crab distribution patterns to be patchy, and that crabs can be locally abundant (0–28 individuals m−2). Crab densities decreased with depth and the dry mass of crab assemblages ranged from 0.0 to 117.7 g m−2. Comparisons among sites revealed significant effects of sedimentation on crab assemblage evenness, but provided no evidence that sedimentation has altered densities, incidence or species richness. The resilience of crabs to sedimentation might be related to their intraspecific dietary breadth. Stable isotope data (δ13C and δ15N) from crabs and their potential food resources indicated differences in trophic roles among endemic crab species. Overall, crabs occupy higher trophic positions than most other invertebrates, and they draw upon both benthic and planktonic energy pathways. The high biomass and top-predator status of some crab species suggests the potential for cascading effects on organisms lower in the food web.  相似文献   

16.
Periphyton development was studied on microscopic glass slides and leaves of Zostera noltii Hornem. in an intertidal area in the Banc d'Arguin (Mauritania). The effects of shading, tidal depth and grazing activities by the fiddler crab Uca tangeri Eydoux were evaluated. For all experiments, periphyton ash content was high (52–93%) and ash-free dry weight ranged between 0.10–0.63 mg cm–2. Slides accumulated more periphyton than leaves.Artificial shading (62–99%) for 13 days had no effect on periphyton densities on leaves. Increased tidal depth resulted in higher ash-free dry weight on slides, but in lower ash-free dry weight on leaves. Significant variation along the coastline also existed. The effect of fiddler crabs was studied using exclosures. Presence of fiddler crabs reduced periphyton density on slides, whereas light transmittance was increased. On leaves, no significant fiddler crab effect was found. This difference between leaves and slides was probably caused by a storm at the day before the end of the experiment, and by the higher periphyton density on slides as compared with leaves. As visual inspection during the experiment showed clear differences in appearance of leaves inside and outside the exclosures, the storm probably sloughed off mainly the older leaves, i.e. those on which the differences in periphyton cover were the highest.It is hypothesized that periphyton accumulation is higher with increased tidal depth, whereas fiddler crab grazing pressure also increases in this direction. The result is a decreased periphyton density with increased tidal depth.The presently found light extinction coefficients (mean 0.8 m–1) and periphyton light attenuance (up to 25%) in Banc d'Arguin are not likely to affect seagrass leaf growth.  相似文献   

17.
Hemigrapsus sanguineus, the Asian shore crab, has rapidly replaced Carcinus maenas, the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus, populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species.  相似文献   

18.
In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.  相似文献   

19.
Aim To examine patterns of abundance, density, size and shell use in land hermit crabs, Coenobita clypeatus (Herbst), occurring on three groups of small islands, and to determine how these variables change among islands. Location Small islands in the Central Exuma Cays and near Great Exuma, Bahamas. Methods Land hermit crabs were captured in baited pitfall traps and were separately attracted to baits. A mark–recapture technique was used in conjunction with some pitfall traps monitored for three consecutive days. The size of each crab and the type of adopted gastropod shell were recorded, along with physical island variables such as total island area, vegetated area, island perimeter, elevation and distance to the nearest mainland island. Results Relative abundances, densities and sizes of crabs differed significantly among the three island groups. Densities of land hermit crabs were as high as 46 m−2 of vegetated island area. In simple and multiple linear regressions, the only variable that was a significant predictor of the abundance of hermit crabs was the perimeter to area ratio of the island. Patterns of gastropod shell use varied significantly among the island groups, and the vast majority of adopted shells originated from gastropod species that inhabit the high intertidal and supratidal shorelines of the islands. Main conclusions Although densities of land hermit crabs varied, they were relatively high on many islands, and land hermit crabs may play an important role in these insular food webs. Patterns of shell use may be strongly restricted by island geomorphology: irregular shorelines provide relatively more habitat for the gastropod species that account for the majority of adopted shells and the steep sides of the islands prevent the accumulation of marine gastropod shells. The size of adult hermit crabs appears to be limited by the relatively small gastropod shells available, while the abundance of hermit crabs may be limited by the number of shells available.  相似文献   

20.
Interaction and habitat partition between the soldier crab Mictyris brevidactylus (prey) and the fiddler crab Uca perplexa (predator) were examined at a sandy tidal flat on Okinawa Island, Japan, where they co-occur. Both live in dense colonies. When the soldier crabs were released in the densely populated habitat of the fiddler crab, male fiddler crabs, which maintain permanent burrows in hard sediment, preyed on small soldier crabs and repelled large ones. Thus, the fiddler crabs prevented the soldier crabs from trespassing. It was also observed whether soldier crabs burrowed successfully when they were released 1) where soldier crab burrows just under the sand were abundant, 2) in a transition area between the two species, 3) an area without either species, and 4) where artificial tunnels simulated soldier crabs' feeding tunnels were made by piling up sand in the area lacking either species. In contrast to the non-habitat area, many soldier crabs burrowed in the sediment near the release point in the tunnel, transition and artificial tunnel areas. This indicates that the feeding tunnels on the surface attracted other crabs after emergence. When the large male fiddler crabs were transplanted into the artificial burrows made in soft sediment of the soldier crab habitat, all left their artificial burrows by 2 days. In the fiddler crab habitat, however, about one-third of the transplanted male fiddler crabs remained in the artificial burrows after 3 days. The soldier crabs regularly disturb the sediment by the up and down movement of their burrow (small air chamber) between tides. This disturbance probably prevents the fiddler crab from making and occupying permanent burrows. Thus, it appears that these crabs divide the sandy intertidal zone by sediment hardness and exclude each other by different means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号