首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of mitochondrial derive peptides (MDPs) has spotlighted mitochondria as central hubs in control and regulation of cell viability and metabolism in the testis in response to intracellular and extracellular stresses. MDPs (Humanin, MOTS-c and SHLP-2) are present in testes. Humanin, the first MDP, is predominantly expressed in Leydig cells, and moderately in germ cells and seminal plasma. The administration of synthetic humanin peptide agonist HNG protects male germ cells against apoptosis induced by intratesticular hormonal deprivation, testicular hyperthermia, and chemotherapeutic agents in rodent testes. Humanin interacting with IGFBP-3 and/or Bax (pro-apoptotic proteins) prevents the activation of germ cell apoptosis. Humanin participates in the network of IL-12/IL-27 family of cytokines to exert the immune-modulation of the testicular environment. Humanin and other MDPs may be important in the amelioration of testicular stress and prevention of cell injury with possible implications for male infertility, fertility preservation and contraceptive development.  相似文献   

2.
BackgroundThe discovery of humanin (HN/MTRNR2) 20 years ago blazed a trail to identifying mitochondrial derived peptides with biological function.ScopeHumanin is associated with pro-survival, cytoprotective, anti-inflammatory, and anti-oxidative properties and may play a role in reducing neurodegenerative and metabolic disease progression. Although the role of humanin in vitro and in vivo laboratory models is well characterized, the regulation of humanin in natural models that encounter lethal cytotoxic and oxidative insults, as part of their natural history, require immediate research. In this review, we discuss the conservation of humanin-homologues across champion hibernators, anoxia and freeze-tolerant vertebrates and postulate on the putative roles of humanin in non-model species.SignificanceWe hope characterization of humanin in animals that are naturally immune to cellular insults, that are otherwise lethal for non-tolerant species, will elucidate key biomarkers and cytoprotective pathways with therapeutic potential and help differentiate pro-survival mechanisms from cellular consequences of stress.  相似文献   

3.
微小RNA(micro RNA,mi RNA)是一类真核生物内源性非编码单链的小RNA分子,长度大约为19-23个核苷酸,拥有高度的保守性,不编码蛋白质,也是近年来研究最热门的一个新领域,通过与靶m RNA特异性结合来调节基因表达,且表达都具有组织特异性。最近,许多研究表明mi RNA在心血管系统疾病和肿瘤疾病方面的相关研究都取得了突破性的进展,mi RNA在肿瘤疾病中是通过调节癌基因及抑癌基因而调控肿瘤的生物学过程,在心血管系统疾病中与心肌肥厚及心肌再生等过程有密切的关系,包括冠状动脉疾病、心肌肥大、心肌梗死、心律失常、高血压和心力衰竭等疾病,且在心脏病学中扮演着及其重要的角色。Mi RNA的表达量增加或者减少对心血管疾病都有影响,该文对新近有关的mi RNA在心血管系统疾病中的研究进展、诊断、治疗以及预后予以综述。  相似文献   

4.
Takayanagi Y  Onaka T 《The FEBS journal》2010,277(24):4998-5005
Subsequent to the isolation of the first recognized RFamide neuropeptide, FMRFamide, from the clam, a large number of these peptides have been identified. There are now five groups of RFamide peptides identified in mammals. RFamide peptides show diversity with respect to their N-terminal sequence and biological activity. RFamide peptides have been implicated in a variety of roles, including energy metabolism, stress and pain modulation, as well as effects in the neuroendocrine and cardiovascular systems. In the present minireview, we focus on prolactin-releasing peptide (PrRP) and RFamide related peptide (RFRP) with respect to their roles in the control of energy metabolism and stress responses. Both food intake and stressful stimuli activate PrRP neurons. The administration of PrRP affects energy metabolism and neuroendocrine systems. PrRP-deficient or PrRP receptor-deficient mice show abnormal energy metabolism and/or stress responses. On the other hand, RFRP neurons are activated by stressful stimuli and the administration of RFRP induces neuroendocrine and behavioral stress responses. Taken together, these data suggests that PrRP and RFRP neurons play a role in the control of energy metabolism and/or stress responses.  相似文献   

5.
Growth differentiation factor-15 (GDF-15) is cytokine involved in the regulation of multiple systems. Because it has regularly been shown to be increased in cardiovascular disease (CVD) and diabetes, it has been suggested that GDF-15 could be used as a biomarker for these diseases and their severity. However, several studies have demonstrated that GDF-15 has a protective role in regulation of inflammation, endothelial cell function, insulin sensitivity, weight gain, and is cardioprotective in myocardial infarction (MI). While GDF-15 has been implicated in the pathophysiology of many conditions including cancer, this review focuses on the potential functions of GDF-15 and signaling pathways implicated in its role regulating metabolism, insulin sensitivity, and the cardiovascular system.  相似文献   

6.
The traditional view of atherosclerosis has recently been expanded from a predominantly lipid retentive disease to a coupling of inflammatory mechanisms and dyslipidemia. Studies have suggested a novel role for polymorphonuclear neutrophil (PMN)-dominant inflammation in the development of atherosclerosis. Human neutrophil peptides (HNPs), also known as alpha-defensins, are secreted and released from PMN granules upon activation and are conventionally involved in microbial killing. Current evidence suggests an important immunomodulative role for these peptides. HNP levels are markedly increased in inflammatory diseases including sepsis and acute coronary syndromes. They have been found within the intima of human atherosclerotic arteries, and their deposition in the skin correlates with the severity of coronary artery diseases. HNPs form complexes with LDL in solution and increase LDL binding to the endothelial surface. HNPs have also been shown to contribute to endothelial dysfunction, lipid metabolism disorder, and the inhibition of fibrinolysis. Given the emerging relationship between PMN-dominant inflammation and atherosclerosis, HNPs may serve as a link between them and as a biological marker and potential therapeutic target in cardiovascular diseases including coronary artery diseases and acute coronary syndromes.  相似文献   

7.
Acute exercise, and in particular aerobic exercise, increases skeletal muscle energy demand causing mitochondrial stress, and mitochondrial-related adaptations which are a hallmark of exercise training. Given that mitochondria are central players in the exercise response, it is imperative that they have networks that can communicate their status both intra- and inter-cellularly. Peptides encoded by short open-reading frames within mitochondrial DNA, mitochondrial-derived peptides (MDPs), have been suggested to form a newly recognised branch of this retrograde signalling cascade that contribute to coordinating the adaptive response to regular exercise. Here we summarise the recent evidence that acute high intensity exercise in humans can increase concentrations of the MDPs humanin and MOTS-c in skeletal muscle and plasma, and speculate on the mechanisms controlling MDP responses to exercise stress. Evidence that exercise training results in chronic changes in MDP expression within tissues and the circulation is conflicting and may depend on the mode, duration, intensity of training plan and participant characteristics. Further research is required to define the effect of these variables on MDPs and to determine whether MDPs other than MOTS-c have exercise mimetic properties. MOTS-c treatment of young and aged mice improves exercise capacity/performance and leads to adaptions that are similar to that of being physically active (weight loss, increased antioxidant capacity and improved insulin sensitivity), however, studies utilising a MOTS-c inactivating genetic variant or combination of exercise + MOTS-c treatment in mice suggest that there are distinct and overlapping pathways through which exercise and MOTS-c evoke metabolic benefits. Overall, MOTS-c, and potentially other MDPs, may be exercise-sensitive myokines and further work is required to define inter- and intra-tissue targets in an exercise context.  相似文献   

8.
近年来,越来越多的研究表明肠道菌群在心血管疾病、2型糖尿病、肥胖等疾病的发病过程中起着主要作用,肠道菌群组成改变以及肠道菌群代谢物水平改变是导致疾病发生发展的重要因素,人们对肠道菌群与宿主之间的相互作用产生极大兴趣。本文系统总结了肠道菌群组成结构改变及肠道菌群代谢物改变与动脉粥样硬化、高血压、心肌梗死、心力衰竭等心血管疾病的相关性,阐明了肠道菌群可能是促进心血管疾病发病的原因之一。因此,通过改变饮食结构和使用抗生素、益生菌制剂及肠道菌群代谢物氧化三甲胺(TMAO)小分子抑制剂,来调控肠道菌群组成及代谢物水平有望作为心血管疾病治疗的新靶点。  相似文献   

9.
Almost 30 years ago, neuropeptide Y (NPY) was discovered as a sympathetic co-transmitter and one of the most evolutionarily conserved peptides abundantly present all over the body. Soon afterward, NPY's multiple receptors were characterized and cloned, and the peptide's role in stress was first documented. NPY has proven to be pivotal for maintaining many stress responses. Most notably, NPY is known for activating long-lasting vasoconstriction in many vascular beds, including coronary arteries. More recently, NPY was found to play a role in stress-induced accretion of adipose tissue which many times can lead to detrimental metabolic changes. It is however due to its prominent actions in the brain, one of which is its powerful ability to stimulate appetite as well as its anxiolytic activities that NPY became a peptide of importance in neuroscience. In contrast, its actions in the rest of the body, including its role as a stress mediator, remained, surprisingly underappreciated and not well understood. Our research has focused on that other, "peripheral" side of NPY. In this review, we will discuss those actions of NPY on the cardiovascular system and metabolism, as they relate to adaptation to stress, and attempt to both distinguish NPY's effects from and integrate them with the effects of the classical stress mediators, glucocorticoids, and catecholamines. To limit the bias of someone (ZZ) who has viewed the world of stress through the eyes of NPY for over 20 years, fresh insight (DH) has been solicited to more objectively assess NPY's contributions to stress-related diseases and the body's ability to adapt to stress.  相似文献   

10.
It has been shown that human breast milk (HBM) is an important nutrient for the growth and development of newborns. Currently, peptide drugs provide promising regimes in neonatal disease treatment, especially peptides from HBM that exhibit multiple functions within cells. To explore the potential biological function peptides among the colostrum, transition and mature milk from mother of extremely low birth weight children (the samples were collected from Women's Hospital of Nanjing Medical University from December 2016 to February 2017). A total of 3,182 nonredundant peptides were identified and compared among colostrum, transitional and mature milk using liquid chromatography/mass spectrometry technology, and the numbers and fragments of peptides were various. The isoelectric point and molecular weight analysis of the differentially expressed peptides basically accord with the range of mass spectrometry identification (<3 kDa). Gene Ontology analysis and Pathway analysis, restriction sites analysis, as well as bioinformatics analysis showed that these differentially expressed peptides enriched a variety of biological processes. We identified several putative peptides that might have bioactive effects in diseases and development of newborns, which will inform further functional investigations. Our preliminary research provided a better understanding of the function of peptides during the newborn periods. Furthermore, it laid a foundation for discovering new peptide drugs in neonatal disease treatment.  相似文献   

11.
Role of apoptosis in cardiovascular disease   总被引:2,自引:0,他引:2  
Apoptosis plays a key role in the pathogenesis in a variety of cardiovascular diseases due to loss of terminally differentiated cardiac myocytes. Cardiac myocytes undergoing apoptosis have been identified in tissue samples from patients suffering from myocardial infarction, diabetic cardiomyopathy, and end-stage congestive heart failure. Apoptosis is a highly regulated program of cell death and can be mediated by death receptors in the plasma membrane, as well as the mitochondria and the endoplasmic reticulum. The cell death program is activated in cardiac myocytes by various stressors including cytokines, increased oxidative stress and DNA damage. Many studies have demonstrated that inhibition of apoptosis is cardioprotective and can prevent the development of heart failure. This review provides a current overview of the evidence of apoptosis in cardiovascular diseases and discusses the molecular pathways involved in cardiac myocyte apoptosis.  相似文献   

12.
13.
Antimicrobial peptides are natural peptide antibiotics, existing ubiquitously in both plant and animal kingdoms. They exhibit broad-spectrum antimicrobial activity and play an important role in host defense against invading microbes. Recently, these peptides have been shown to possess activities unrelated to direct microbial killing and be involved in the complex network of immune responses and inflammation. Thus, their role has now broadened beyond that of endogenous antibiotics. Because of their wide involvement in inflammatory response and the emerging role of inflammation in atherosclerosis, antimicrobial peptides have been proposed to represent an important link between inflammation and the pathogenesis of atherosclerotic cardiovascular diseases. This review highlights recent findings that support a role of these peptides in cardiovascular physiology and disease.  相似文献   

14.
15.
Wu ZJ  Jin W  Zhang FR  Liu Y 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素,主要包括A型、B型和C型利钠肽,具有相似的基因结构和生理学效应,可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性,调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽,通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示,其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化,与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制,为临床诊疗开辟新思路。  相似文献   

16.
吴志俊  金玮  张凤如  刘艳 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。  相似文献   

17.
18.
Vascular diseases such as atherosclerosis, stroke or myocardial infarction are a significant public health problem worldwide. Attempts to prevent vascular diseases often imply modifications and improvement of causative risk factors such as high blood pressure, obesity, an unfavorable profile of blood lipids or insulin resistance. In addition to numerous preventive and therapeutic drug regimens, there has been increased focus on identifying dietary compounds that may contribute to cardiovascular health in recent years. Food-derived bioactive peptides represent one such source of health-enhancing components. They can be released during gastrointestinal digestion or food processing from a multitude of plant and animal proteins, especially milk, soy or fish proteins. Biologically active peptides are considered to promote diverse activities, including opiate-like, mineral binding, immunomodulatory, antimicrobial, antioxidant, antithrombotic, hypocholesterolemic and antihypertensive actions. By modulating and improving physiological functions, bioactive peptides may provide new therapeutic applications for the prevention or treatment of chronic diseases. As components of functional foods or nutraceuticals with certain health claims, bioactive peptides are of commercial interest as well. The current review centers on bioactive peptides with properties relevant to cardiovascular health.  相似文献   

19.
1-磷酸鞘氨醇受体   总被引:1,自引:0,他引:1  
1-磷酸鞘氨醇(sphingosine-1-phosphate,S1P)对动脉粥样硬化等心血管疾病的发生发展具有重要作用。最近研究发现S1P在不同细胞发挥的生物学效应由其受体(sphingosine-1-phosphate receptor,S1PR)介导,以S1PR及其信号机制为基础的研究及治疗策略成为新的研究热点。本文主要综述S1PR的功能、信号通路及对心血管疾病的影响,为心血管疾病的预防和诊疗提供新的靶点。  相似文献   

20.
Humanin and its analogues have been shown to protect cells against death induced by various Alzheimer's disease genes and amyloid-beta-peptides in vitro: the analogue [Gly14]-humanin has also been shown to be potent in reversing learning and memory impairment induced by scopolamine in mice in vivo. It is important to validate these results by using other behavioral methods. In this study, the effect of [Gly14]-humanin and des-Leu-PAGA, another analogue (0.2 micromol kg(-1), i.p.) on the 3-quinuclidinyl benzilate-induced (2 mg kg(-1), i.p.) impairment of spatial memory in the multiple T-maze in rats has been evaluated. Both peptides reversed the impairment of spatial memory. These results indicate the potential of humanin analogues in modulation of the cholinergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号