首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
组织缺氧是实体瘤的一个主要特征,它引起肿瘤细胞胞外酸性环境的形成.肿瘤细胞通过质子感知的G蛋白偶联受体(G protein-coupled receptors,GPCRs)或质子感知的离子通道感知其胞外的酸性环境,并激活多条细胞内信号通路,影响细胞功能. 肿瘤最致命的方面在于其转移能力,肿瘤转移程度与肿瘤细胞迁移能力呈正相关. 因此,对胞外酸性与肿瘤细胞迁移扩散之间关系的深入研究将有助于发现更多新的抗肿瘤转移药物.本文就肿瘤酸性微环境的形成、肿瘤细胞的质子感知制、胞外酸性环境对肿瘤浸润转移的影响及如何将肿瘤pH调节应用于癌症治疗等方面的内容予以综述.  相似文献   

2.
Metastasis of primary tumors progresses stepwise — from change in biochemistry, morphology, and migratory patterns of tumor cells to the emergence of receptors on their surface that facilitate directional migration to target organs followed by the formation of a specific microenvironment in a target organ that helps attachment and survival of metastatic cells. A set of specific genes and signaling pathways mediate this process under control of microRNA. The molecular mechanisms underlying biological processes associated with tumor metastasis are reviewed in this publication using ovarian cancer, which exhibits high metastatic potential, as an example. Information and data on the genes and regulatory microRNAs involved in the formation of cancer stem cells, epithelial–mesenchymal transition, reducing focal adhesion, degradation of extracellular matrix, increasing migration activity of cancer cells, formation of spheroids, apoptosis, autophagy, angiogenesis, formation of metastases, and development of ascites are presented. Clusters of microRNAs (miR-145, miR-31, miR-506, miR-101) most essential for metastasis of ovarian cancer including the families of microRNAs (miR-200, miR-214, miR-25) with dual role, which is different in different histological types of ovarian cancer, are discussed in detail in a section of the review.  相似文献   

3.
Metastasis suppressors genes in cancer   总被引:1,自引:0,他引:1  
The major problem for cancer patients is metastasis of the cancer from the primary tumor to secondary sites. Metastasis is the process by which tumor cells disseminate from the primary tumor, migrate through the basement membrane, survive in the circulatory system, invade into a secondary site, and start to proliferate. In the past, research had concentrated on the biology, taking more of a global view instead of a molecular view. More recently, the focus has been determining the molecular underpinnings, looking at genes that induce or inhibit metastasis. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade without blocking primary tumor growth. The expanding list of metastasis suppressors exist with every cellular compartment and have been shown to work by regulating signaling pathways that inhibit proliferation, cell migration and growth at the secondary site. Still, the biochemical basis of their inhibition is not completely known. Here we review the known metastasis suppressors and summarize the suspected mechanisms by which they inhibit metastasis.  相似文献   

4.
肿瘤浸润转移分子机制的研究进展   总被引:5,自引:0,他引:5  
肿瘤浸润转移是多因素参与、多步骤完成的生物化学变化过程。人们已经逐渐认识到浸润转移不仅与肿瘤细胞有关,更是肿瘤细胞和肿瘤组织微环境复杂的相互作用的结果,其过程涉及多个分子作用机制和信号转导途径,包括细胞和细胞的黏附分子、细胞外基质降解、生长因子、趋化因子和淋巴血管生成因子等。本文综述了肿瘤浸润转移的分子机制。  相似文献   

5.
Metastasis is not only one of the hallmarks of cancer but, unfortunately, it also is the most accurate biomarker for poor prognosis. Cancer cells metastasize through two different but eventually merged routes, the vasculature and lymphatic systems. The processes of cancer metastasis through blood vessel have been extensively studied and are well documented in the literature. In contrast, metastasis through the lymphatic system is less studied. Most people believe that cancer cells metastasize through lymphatic vessel are passive because the lymphatic system is thought to be a sewage draining system that collects whatever appears in the tissue fluid. It was recently found that cancer cells disseminated from lymphatic vessels are protected from being destroyed by our body’s defense system. Furthermore, some cancer cells or cancer-associated immune cells secrete lymphangiogenic factors to recruit lymphatic vessel infiltration to the tumor region, a process known as lymphangiogenesis. To ensure the efficiency of lymphangiogenesis, the lymphangiogenic mediators are carried or packed by nanometer-sized particles named extracellular vesicles. Extracellular vesicles are lipid bilayer particles released from eventually every single cell, including bacterium, with diameters ranging from 30 nm (exosome) to several micrometers (apoptotic body). Components carried by extracellular vesicles include but are not limited to DNA, RNA, protein, fatty acid, and other metabolites. Recent studies suggest that cancer cells not only secrete more extracellular vesicles but also upload critical mediators required for lymphatic metastasis onto extracellular vesicles. This review will summarize recent advances in cancer lymphatic metastasis and how cancer cells regulate this process via extracellular vesicle-dependent lymphangiogenesis.  相似文献   

6.
Metastasis of cancer cells is the main cause of death in most breast cancer patients. Although markers for early diagnosis and drugs that limit the spread of cancer to other organs have been developed, it is difficult to prevent the relapse of breast cancer. Recent research has highlighted the importance of tumor environment in which communication between tumor cells and the body system occurs. Emerging data have suggested that animal models are a good system to investigate this communication. Therefore, studies with mouse models have been developed as a reasonable method for a systemic approach to understand breast cancer metastasis. In this review, we summarize mouse models of breast cancer and their applications to the study of human breast cancers, and discuss limitation of model system and advanced techniques to overcome it.  相似文献   

7.
Metastasis, tumor relapse, and drug resistance remain major obstacles in the treatment of cancer. Therefore, more research on the mechanisms of these processes in disease is warranted for improved treatment options. Recent evidence suggests that the capability to sustain tumor growth and metastasis resides in a subpopulation of cells, termed cancer stem cells or tumor-initiating cells. Continuous proliferation and self-renewal are characteristics of stem/progenitor cells. Telomerase and the maintenance of telomeres are key players in the ability of stem and cancer cells to bypass senescence and be immortal. Therefore, telomerase inhibitors have the therapeutic potential for reducing tumor relapse by targeting cancer stem cells and other processes involved in metastasis. Herein we review the role of telomerase in the immortal phenotype of cancer and cancer stem cells, targeting telomerase in cancer, and discuss other opportunities for telomerase inhibitors to target critical steps in cancer metastasis and recurrence.  相似文献   

8.
Metastasis, the process by which cancer spreads from a primary to a secondary site, is responsible for the majority of cancer related deaths. Yet despite the detrimental effects of metastasis, it is an extremely inefficient process by which very few of the cells that leave the primary tumor give rise to secondary tumors. Metastasis can be considered as a series of sequential steps that begins with a cell leaving a primary tumor, and concludes with the formation of a metastatic tumor in a distant site. During the process of metastasis cells are subjected to various apoptotic stimuli. Thus, in addition to genetic changes that promote unregulated proliferation, successful metastatic cells must have a decreased sensitivity to apoptotic stimuli. As many cancer cells exhibit aberrations in the level and function of key apoptotic regulators, exploiting these alterations to induce tumor cell apoptosis offers a promising therapeutic target. This review will examine the apoptotic regulators that are often aberrantly expressed in metastatic cells; the role that these regulators may play in metastasis; the steps of metastasis and their susceptibility to apoptosis; and finally, current and future cancer prognostics and treatment targets based on apoptotic regulators.  相似文献   

9.
肿瘤转移是细胞恶性的重要标志之一,有许多基因和因子都参与这一过程。对S100A4基因的研究发现,它可参与细胞周期调控、细胞增殖与分化、血管生成、细胞外基质重建等多种生命过程,调控细胞的生长和运动。在某些特定的肿瘤细胞内,它的表达含量的增加可促进肿瘤细胞发生转移,并与癌症的发生具有某些相关性,可能对人类癌症的发生具有预后作用。现就S100A4基因表达与肿瘤转移的关系进行初步的探讨,以期对癌症的临床诊断提供一些参考。  相似文献   

10.
肿瘤转移是一个多阶段的恶性进展过程,涉及肿瘤细胞从原发部位逃逸,侵入脉管系统并在其中存活,随循环系统到达远处靶器官并穿出脉管系统播散定植,最终克隆性生长形成转移瘤。转移过程的每一阶段与肿瘤细胞本身遗传和表观遗传改变以及微环境中诸多因素的综合调控密切相关。本综述概要介绍了恶性肿瘤转移多步骤过程中所涉的分子调控机制以及肿瘤转移靶向干预新措施等方面的研究进展;同时,就未来肿瘤转移研究相关的新技术和新方向作一简单的展望。  相似文献   

11.
Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.  相似文献   

12.
Most cancer deaths result from metastasis, which is the dissemination of cells from a primary tumor to distant organs. Metastasis involves changes to molecules that are essential for tumor cell adhesion to the extracellular matrix and to endothelial cells. Junctional Adhesion Molecule C (JAM-C) localizes at intercellular junctions as homodimers or more affine heterodimers with JAM-B. We previously showed that the homodimerization site (E66) in JAM-C is also involved in JAM-B binding. Here we show that neoexpression of JAM-C in a JAM-C-negative carcinoma cell line induced loss of adhesive property and pro-metastatic capacities. We also identify two critical structural sites (E66 and K68) for JAM-C/JAM-B interaction by directed mutagenesis of JAM-C and studied their implication on tumor cell behavior. JAM-C mutants did not bind to JAM-B or localize correctly to junctions. Moreover, mutated JAM-C proteins increased adhesion and reduced proliferation and migration of lung carcinoma cell lines. Carcinoma cells expressing mutant JAM-C grew slower than with JAM-C WT and were not able to establish metastatic lung nodules in mice. Overall these data demonstrate that the dimerization sites E66-K68 of JAM-C affected cell adhesion, polarization and migration and are essential for tumor cell metastasis.  相似文献   

13.
14.
15.
Development of metastasis causes the most serious clinical consequences of cancer and is responsible for over 90 % of cancer-related deaths. Hence, a better understanding of the mechanisms that drive metastasis formation appears critical for drug development designed to prevent the spread of cancer and related mortality. Metastasis dissemination is a multistep process supported by the increased motility and invasiveness capacities of tumor cells. To succeed in overcoming the mechanical constraints imposed by the basement membrane and surrounding tissues, cancer cells reorganize their focal adhesions or extend acto-adhesive cellular protrusions, called invadosomes, that can both contact the extracellular matrix and tune its degradation through metalloprotease activity. Over the last decade, accumulating evidence has demonstrated that altered Ca2+ channel activities and/or expression promote tumor cell-specific phenotypic changes, such as exacerbated migration and invasion capacities, leading to metastasis formation. While several studies have addressed the molecular basis of Ca2+ channel-dependent cancer cell migration, we are still far from having a comprehensive vision of the Ca2+ channel-regulated mechanisms of migration/invasion. This is especially true regarding the specific context of invadosome-driven invasion. This review aims to provide an overview of the current evidence supporting a central role for Ca2+ channel-dependent signaling in the regulation of these dynamic degradative structures. It will present available data on the few Ca2+ channels that have been studied in that specific context and discuss some potential interesting actors that have not been fully explored yet.  相似文献   

16.
Gastric cancer is the second leading cause of cancer death worldwide. Here, we propose a novel type of tumor metastasis designated as Metastasis V in gastric cancer. Metastasis V is defined as the appearance of cancer cells in the mesogastrium with perigastric adipose tissue. To detect its incidence and characterize its clinic pathological features, large cross sectional tissue analysis of mesogastrium from 74 patients were used. Metastasis V was detected in 1 of 40 (2.5%) patients with early gastric cancer, 8 of 34 (24%) patients with advanced gastric cancer. The mean distance of Metastasis V from gastric wall was approximately 2.6 cm. Metastasis V was closely associated with tumor invasion depth, along with a number of positive lymph node metastasis. The prognosis of patients with Metastasis V was significantly (P<0.05) worse than those with tumor cell-free mesogastrium. These findings indicate that by using whole-sectional analysis, Metastasis V can be detected in the mesogastrium of gastric cancer patients, and also suggests that it may be a risk factor for patient survival after radical surgery.  相似文献   

17.
Metastasis is a complex process divided into a number of steps including detachment of tumor cells from the primary tumor, invasion, migration, intravasation, survival in the vasculature, extravasation, and colonization of the secondary site. Proteins that block metastasis without inhibiting primary tumor formation are known as metastasis suppressors; examples are NM23, Maspin, KAI1, KISS1, and MKK4. Breast cancer metastasis suppressor 1 (BRMS1) was identified as a suppressor of breast cancer metastasis in the late 1990s. In vitro and in vivo studies have confirmed that BRMS1 is a potent metastasis suppressor not limited to breast cancer. However, conflicting clinical observations regarding its role as a metastasis suppressor and its validity as a diagnostic biomarker warrant more in-depth clinical study. In this review, the authors provide an overview of its biology, function, action mechanism and pathological significance.  相似文献   

18.
Established cadherin and integrin-containing adherens junctions maintain the integrity of normal tissues. Signalling via adhesion-molecule systems is an important factor in the control of cellular growth and differentiation. In transformed cells, destructive changes in the adhesion systems lead to abnormal relationships among neighbouring cells and the extracellular matrix. Adhesion molecules may prevent tumour progression by firmly attaching cells to each other, and by anchoring them in the extracellular matrix. In addition, cadherins and integrins may have a direct role in tumour suppression by participating in growth control. Dissemination of cancer cells, i.e. invasion and metastasis, requires movement of cells, as well as adhesion to extracellular matrices and to other cells. Particular integrins have been implicated in several aspects of this multistep process. In this article, the data on the possible roles of cadherins and integrins in tumor progression are summarized.  相似文献   

19.
Metastasis is a frequent complication of cancer, yet the process through which circulating tumor cells form distant colonies is poorly understood. We have been able to observe the steps in early hematogenous metastasis by epifluorescence microscopy of tumor cells expressing green fluorescent protein in subpleural microvessels in intact, perfused mouse and rat lungs. Metastatic tumor cells attached to the endothelia of pulmonary pre-capillary arterioles and capillaries. Extravasation of tumor cells was rare, and it seemed that the transmigrated cells were cleared quickly by the lung, leaving only the endothelium-attached cells as the seeds of secondary tumors. Early colonies were entirely within the blood vessels. Although most models of metastasis include an extravasation step early in the process, here we show that in the lung, metastasis is initiated by attachment of tumor cells to the vascular endothelium and that hematogenous metastasis originates from the proliferation of attached intravascular tumor cells rather than from extravasated ones. Intravascular metastasis formation would make early colonies especially vulnerable to intravascular drugs, and this possibility has potential for the prevention of tumor cell attachment to the endothelium.  相似文献   

20.
Metastasis is the main cause of death in patients with advanced lung cancer. The exosomes released by cancer cells create tumor microenvironment, and then accelerate tumor metastasis. Cancer-derived exosomes are considered to be the main driving force for metastasis niche formation at foreign sites, but the mechanism in Non-small cell lung carcinoma (NSCLC) is unclear. In metastatic NSCLC patients, the expression level of miR-3157-3p in circulating exosomes was significantly higher than that of non-metastatic NSCLC patients. Here, we found that miR-3157-3p can be transferred from NSCLC cells to vascular endothelial cells through exosomes. Our work indicates that exosome miR-3157-3p is involved in the formation of pre-metastatic niche formation before tumor metastasis and may be used as a blood-based biomarker for NSCLC metastasis. Exosome miR-3157-3p has regulated the expression of VEGF/MMP2/MMP9 and occludin in endothelial cells by targeting TIMP/KLF2, thereby promoted angiogenesis and increased vascular permeability. In addition, exosome miR-3157-3p promoted the metastasis of NSCLC in vivo.Subject terms: Cancer microenvironment, Non-small-cell lung cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号