首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuropilin 1 (NRP1) is a transmembrane glycoprotein that acts as a co-receptor for a number of extracellular ligands including class III/IV semaphorins, certain isoforms of vascular endothelial growth factor and transforming growth factor beta. An exact understanding of the role of NRP1 in the immune system has been obscured by the differences in NRP1 expression observed between mice and humans. In mice, NRP1 is selectively expressed on thymic-derived Tregs and greatly enhances immunosuppressive function. In humans, NRP1 is expressed on plasmacytoid dendritic cells (pDCs) where it aids in priming immune responses and on a subset of T regulatory cells (Tregs) isolated from secondary lymph nodes. Preliminary studies that show NRP1 expression on T cells confers enhanced immunosuppressive activity. However, the mechanism by which this activity is mediated remains unclear. NRP1 expression has also been identified on activated T cells and Tregs isolated from inflammatory microenvironments, suggesting NRP1 might represent a novel T cell activation marker. Of clinical interest, NRP1 may enhance Treg tumour infiltration and a decrease in NRP1+ Tregs correlates with successful chemotherapy, suggesting a specific role for NRP1 in cancer pathology. As a therapeutic target, NRP1 allows simultaneous targeting of NRP1-expressing tumour vasculature, NRP1+ Tregs and pDCs. With the development of anti-NRP1 monoclonal antibodies and cell-penetrating peptides, NRP1 represents a promising new target for cancer therapies. This paper reviews current knowledge on the role and function of NRP1 in Tregs and pDCs, both in physiological and cancer settings, as well as its potential as a therapeutic target in cancer.  相似文献   

2.
3.
The formation of inner ear sensory epithelia is believed to occur in two steps, initial specification of sensory competent (prosensory) regions followed by determination of specific cell‐types, such as hair cells (HCs) and supporting cells. However, studies in which the HC determination factor Atoh1 was ectopically expressed in nonprosensory regions indicated that expression of Atoh1 alone is sufficient to induce HC formation suggesting that prosensory formation may not be a prerequisite for HC development. To test this hypothesis, interactions between Sox2 and Atoh1, which are required for prosensory and HC formation respectively, were examined. Forced expression of Atoh1 in nonprosensory cells resulted in transient expression of Sox2 prior to HC formation, suggesting that expression of Sox2 is required for formation of ectopic HCs. Moreover, Atoh1 overexpression failed to induce HC formation in Sox2 mutants, confirming that Sox2 is required for prosensory competence. To determine whether expression of Sox2 alone is sufficient to induce prosensory identity, Sox2 was transiently activated in a manner that mimicked endogenous expression. Following transient Sox2 activation, nonprosensory cells developed as HCs, a result that was never observed in response to persistent expression of Sox2. These results, suggest a dual role for Sox2 in inner ear formation. Initially, Sox2 is required to specify prosensory competence, but subsequent down‐regulation of Sox2 must occur to allow Atoh1 expression, most likely through a direct interaction with the Atoh1 promoter. These results implicate Sox2‐mediated changes in prosensory cells as an essential step in their ability to develop as HCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 3–13, 2017  相似文献   

4.
5.
Studies using [3H]androstenedione (A) demonstrated that this substrate can be aromatized to estrone (E1) in homogenates of breast carcinoma tissue and breast adipose tissue, in breast carcinoma and breast adipose stromal cells in culture, and in cultured adipose stromal cells from sites remote from the tumor. Using cultured breast carcinoma cells, it was shown that estrogen formation was stimulated by Cortisol (10−6 M) and inhibited by endogenous 5-reduced androgens: 5-androstene-dione>androsterone>dihydrotestosterone>epiandrosterone>3- and 3β-androstanediol. It was also shown that 19-nortestosterone and 19-norandrostenedione (10−6 M) inhibited E1 formation by 80%. Progesterone (10−6 M) had no effect on aromatase activity, while the progestational agent R5020 (10−6 M) caused a 70% inhibition. These studies emphasize that a variety of compounds can influence aromatase activity and that drugs which are used as aromatase inhibitors in patients with breast carcinoma may have multiple sites of action.  相似文献   

6.
7.
Purinergic Signalling - Breast cancer (BC) is the most frequent cause of death among women, representing a global public health problem. Here, we aimed to discuss the correlation between the...  相似文献   

8.
Malignant neoplasms are regarded as the main cause of death around the world; hence, many research studies were conducted to further perceive molecular mechanisms, treatment, and cancer prognosis. Cancer is known as a major factor for health-related problems in the world. The main challenges associated with these diseases are prompt diagnosis, disease remission classification and treatment status forecast. Therefore, progressing in such areas by developing new and optimized methods with the help of minimally invasive biological markers such as circular microRNAs (miRNAs) can be considered important. miRNA interactions with target genes have specified their role in development, apoptosis, differentiation, and proliferation and also, confirm direct miRNA function in cancer. Different miRNAs expression levels in various types of malignant neoplasms have been observed to be associated with prognosis of various carcinomas. miR-9 seems to implement opposite practices in different tissues or under various cancer incidences by influencing different genes. Aberrant miR-9 levels have been observed in many cancer types. Therefore, we intended to investigate the precise role of miR-9 in patients with malignant neoplasms. To this end, in this study, we attempted to examine different studies to clarify the overall role of miR-9 as a prognostic marker in several human tumors. The presented data in this study can help us to find the novel therapeutic avenues for treatment of human cancers.  相似文献   

9.
Breast cancer is a major cause of death globally, and particularly in developed countries. Breast cancer is influenced by cholesterol membrane content, by affecting the signaling pathways modulating cell growth, adherence, and migration. Furthermore, steroid hormones are derived from cholesterol and these play a key role in the pathogenesis of breast cancer. Although most findings have reported an inverse association between serum high-density lipoprotein (HDL)-cholesterol level and the risk of breast cancer, there have been some reports of the opposite, and the association therefore remains unclear. HDL is principally known for participating in reverse cholesterol transport and has an inverse relationship with the cardiovascular risk. HDL is heterogeneous, with particles varying in composition, size, and structure, which can be altered under different circumstances, such as inflammation, aging, and certain diseases. It has also been proposed that HDL functionality might have a bearing on the breast cancer. Owing to the potential role of cholesterol in cancer, its reduction using statins, and particularly as an adjuvant during chemotherapy may be useful in the anticancer treatment, and may also be related to the decline in cancer mortality. Reconstituted HDLs have the ability to release chemotherapeutic drugs inside the cell. As a consequence, this may be a novel way to improve therapeutic targeting for the breast cancer on the basis of detrimental impacts of oxidized HDL on cancer development.  相似文献   

10.
Mughees  Mohd  Chugh  Himanshu  Wajid  Saima 《Protoplasma》2020,257(2):345-352
Protoplasma - Vesicular trafficking between endoplasmic reticulum and Golgi plays a major role in the growth and proliferation of breast cancer cells. Various proteins regulate this ER-Golgi...  相似文献   

11.
Nek2A (NIMA-related kinases 2A) has been known as an important centrosome regulatory factor. The aim of this study was to investigate the expression of Nek2A and the role it played in different stages of breast cancer. We detected the expression of Nek2A in both mRNA and protein levels in MCF10 cell lines including MCF-10A, MCF-10DCIS.com, MCF-10CA1a and in human breast samples which contained normal breast tissue (NBT), breast ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). Our study revealed that the mRNA and protein expression of Nek2A were significantly up-regulated in MCF-10DCIS.com and MCF-10CA1a cell lines as well as in human primary breast cancer tissue (DCIS and IDC). Our study also presented a correlation between Nek2A mRNA expression and some clinic pathological factors. We found that Nek2A mRNA expression was associated with molecular subtypes, ER, PR and Ki-67 immunoreactivity (P<0.05) in DCIS and associated with histological grade, lymph node metastasis, molecular subtypes, c-erbB-2, and Ki-67 expression (P<0.05) in IDC. In addition, we observed that ectopic expression of Nek2A in "normal" immortalized MCF-10A breast epithelial cell resulted in increased Nek2A which lead to abnormal centrosomes. Furthermore, knockdown of Nek2A in MCF-10DCIS.com could remarkably inhibit cell proliferation and induce cell cycle arrest in MCF-10DCIS.com cell line. These data suggested that Nek2A might bear a close relationship with development and progression of breast carcinoma, and highlighted its role as a novel potential biomarker for diagnosis and a possible therapeutic target for human breast cancer especially for DCIS.  相似文献   

12.
The pathology and physiology of breast cancer(BC),including metastasis,and drug resistance,is driven by multiple signaling pathways in the tumor microenvironment(TME),which hamper antitumor immunity.Recently,long non-coding RNAs have been reported to mediate pathophysiological developments such as metastasis as well as immune suppression within the TME.Given the complex biology of BC,novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes.In this review,we describe the advances in the biology of breast neoplasia,including cellular and molecular biology,heterogeneity,and TME.We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC.Finally,we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms,crustaceans,and fishes and their synergistic effects in combination with other anticancer drugs.Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development,thus assisting current therapeutic regimens.  相似文献   

13.
14.
A series of tetrahydroisoquinoline-N-phenylamide derivatives were designed, synthesized, and tested for their relative binding affinities, and antagonistic activities against estrogen receptor (ER). Compound 1f (relative binding affinity, RBA=5) showed higher binding affinity than tamoxifen (RBA=1), a potent ER antagonist and currently being used for breast cancer therapy. Compound 1f also exerted optimal antagonistic activity against ER in reporter and cell proliferation assays. Interestingly, compound 1j, which only has a minor agonistic effect against ER, acted as a progesterone receptor (PR) antagonist and exerted agonistic activity against AP-1 through ER pathway. Our results show that these new compounds can be employed as leading pharmacophore for further development of potent selective ER and/or PR modulators or antagonists.  相似文献   

15.
16.
17.
Prostate cancer is the most frequently diagnosed tumor in men and the second most common cause of cancer-related death for males in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of prostate cancer, such as androgen receptor (AR), Akt, Wnt, Hedgehog (Hh) and Notch. Recently, burgeoning amounts of evidence have implicated that the F-box protein Skp2 (S-phase kinase associated protein 2), a well-characterized oncoprotein, also plays a critical role in the development and progression of prostate cancer. Therefore, this review discusses the recent literature regarding the function and regulation of Skp2 in the pathogenesis of prostate cancer. Furthermore, we highlight that Skp2 may represent an attractive therapeutic target, thus warrants further development of agents to target Skp2, which could have significant therapeutic impact on prostate cancer.  相似文献   

18.
BackgroundThe tumor suppressor protein phosphatase 2A (PP2A) is frequently inactivated in human cancer and phosphorylation of its catalytic subunit (p-PP2A-C) at tyrosine-307 (Y307) has been described to inhibit this phosphatase. However, its molecular and clinical relevance in colorectal cancer (CRC) remains unclear.Methodsp-PP2A-C Y307 was determined by immunoblotting in 7 CRC cell lines and 35 CRC patients. CRC cells were treated with the PP2A activator forskolin alone or combined with the PP2A inhibitor okadaic acid, 5-fluorouracil and oxaliplatin. We examined cell growth, colonosphere formation, caspase activity and AKT and ERK activation.ResultsPP2A-C was found hyperphosphorylated in CRC cell lines. Forskolin dephosphorylated and activated PP2A, impairing proliferation and colonosphere formation, and inducing activation of caspase 3/7 and changes in AKT and ERK phosphorylation. Moreover, forskolin showed additive effects with 5-fluorouracil and oxaliplatin treatments. Analysis of p-PP2A-C Y307 in primary tumors confirmed the presence of this alteration in a subgroup of CRC patients.ConclusionsOur data show that PP2A-C hyperphosphorylation is a frequent event that contributes to PP2A inhibition in CRC. Antitumoral effects of forskolin-mediated PP2A activation suggest that the analysis of p-PP2A-C Y307 status could be used to identify a subgroup of patients who would benefit from treatments based on PP2A activators.  相似文献   

19.
Ephrin type-A receptor 2(EphA2), a receptor tyrosine kinase, is overexpressed in human breast cancers often linked to poor patient prognosis. Accumulating evidence demonstrates that EphA2 plays important roles in several critical processes associated with malignant breast progression, such as proliferation,survival, migration, invasion, drug resistance, metastasis, and angiogenesis. As its inhibition through multiple approaches can inhibit the growth of breast cancer and restore drug sensitivity, EphA2 has become a promising therapeutic target for breast cancer treatment. Here, we summarize the expression,functions, mechanisms of action, and regulation of EphA2 in breast cancer. We also list the potential therapeutic strategies targeting EphA2. Furthermore, we discuss the future directions of studying EphA2 in breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号