首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane lipid peroxidation processes yield products that may react with proteins to cause oxidative modification. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. When exposed to lipid peroxidation products, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE) and lipid hydroperoxide, ICDH was susceptible to oxidative damage, which was indicated by the loss of activity and the formation of carbonyl groups. The structural alterations of modified enzymes were indicated by the change in thermal stability, intrinsic tryptophan fluorescence and binding of the hydrophobic probe 8-anilino 1-napthalene sulfonic acid. Upon exposure to 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH), which induces lipid peroxidation in membrane, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed in U937 cells. Using immunoprecipitation and immunoblotting, we were able to isolate and positively identify HNE adduct in mitochondrial ICDH from AAPH-treated U937 cells. The lipid peroxidation-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

2.
Graham Mitchell discusses how work in his and other laboratories has suggested that glutathione S-transferases may be potential candidate antigens for use in multicomponent anti-Schistosoma vaccines.  相似文献   

3.
Glutathione S-transferase class μ in French alcoholic cirrhotic patients   总被引:6,自引:1,他引:5  
Summary The lack of glutathione S-transferase (GST) was examined in 45 healthy French Caucasians and 45 alcoholic cirrhotic French Caucasians: microsamples of blood were taken and DNA amplified by the polymerase chain reaction. We have concluded that there is no relationship between this genotype and the development of alcoholic cirrhosis in these heavy consumers of ethanol.  相似文献   

4.
GSH is the major antioxidant and detoxifier of xenobiotics in mammalian cells. A strong decrease of intracellular GSH has been frequently linked to pathological conditions like ischemia/reperfusion injury and degenerative diseases including diabetes, atherosclerosis, and neurodegeneration. Although GSH is essential for survival, the deleterious effects of GSH deficiency can often be compensated by thiol-containing antioxidants. Using three genetically defined cellular systems, we show here that forced expression of xCT, the substrate-specific subunit of the cystine/glutamate antiporter, in γ-glutamylcysteine synthetase knock-out cells rescues GSH deficiency by increasing cellular cystine uptake, leading to augmented intracellular and surprisingly high extracellular cysteine levels. Moreover, we provide evidence that under GSH deprivation, the cytosolic thioredoxin/thioredoxin reductase system plays an essential role for the cells to deal with the excess amount of intracellular cystine. Our studies provide first evidence that GSH deficiency can be rescued by an intrinsic genetic mechanism to be considered when designing therapeutic rationales targeting specific redox enzymes to combat diseases linked to GSH deprivation.  相似文献   

5.

Background

Ability to accurately determine time of stroke onset remains challenging. We hypothesized that an early biomarker characterized by a rapid increase in blood after stroke onset may help defining better the time window during which an acute stroke patient may be candidate for intravenous thrombolysis or other intravascular procedures.

Methods

The blood level of 29 proteins was measured by immunoassays on a prospective cohort of stroke patients (N = 103) and controls (N = 132). Mann-Whitney U tests, ROC curves and diagnostic odds ratios were applied to evaluate their clinical performances.

Results

Among the 29 molecules tested, GST-π concentration was the most significantly elevated marker in the blood of stroke patients (p<0.001). More importantly, GST-π displayed the best area under the curve (AUC, 0.79) and the best diagnostic odds ratios (10.0) for discriminating early (N = 22, <3 h of stroke onset) vs. late stroke patients (N = 81, >3 h after onset). According to goal-oriented distinct cut-offs (sensitivity(Se)-oriented: 17.7 or specificity(Sp)-oriented: 65.2 ug/L), the GST-π test obtained 91%Se/50%Sp and 50%Se/91%Sp, respectively. Moreover, GST-π showed also the highest AUC (0.83) and performances for detecting patients treated with tPA (N = 12) compared to ineligible patients (N = 103).

Conclusions

This study demonstrates that GST-π can accurately predict the time of stroke onset in over 50% of early stroke patients. The GST-π test could therefore complement current guidelines for tPA administration and potentially increase the number of patients accessing thrombolysis.  相似文献   

6.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a unique antioxidative enzyme which specifically catalyses the reduction of phospholipid hydroperoxides so as to protect biomembrane from oxidative injury. A radish cDNA encoding putative PHGPx (RsPHGPx, GenBank accession number AF322903) was cloned  相似文献   

7.
In the present work,we investigated the effect of ascorbic acid and glutathione on hemolysisinduced by hemin in erythrocytes.Ascorbic acid not only enhanced hemolysis,but also induced formationof thiobarbituric acid-reactive substances in the presence of hemin.It has been shown that glutathioneinhibits hemin-induced hemolysis by mediating hemin degradation.Erythrocytes depleted of glutathionebecame very sensitive to oxidative stress induced by hemin and ascorbic acid.H_2O_2 was involved in hemin-mediated hemolysis in the presence of ascorbic acid.However,a combination of glutathione and ascorbicacid was more effective in inhibiting hemolysis induced by hemin than glutathione alone.Extracellular andintracellular ascorbic acid exhibited a similar effect on hemin-induced hemolysis or inhibition of hemin-induced hemolysis by glutathione.The current study indicates that ascorbic acid might function as anantioxidant or prooxidant in hemin-mediated hemolysis,depending on whether glutathione is available.  相似文献   

8.
α-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP. However, this effect was not observed ex vivo with mitochondrial-enriched fraction from mice treated with an intracerebroventricular injection of 0.1 or 1 nmol/site of αTP. Two days after treatment (1 nmol/site αTP), peroxiredoxin 2 (Prx2) and glutathione reductase (GR) expression and GR activity were decreased in cerebral cortex and hippocampus. Glutathione content, glutathione peroxidase, and thioredoxin reductase activities were not affected by αTP. In conclusion, the persistent decrease in GR and Prx2 protein content is the first report of an in vivo effect of αTP on protein expression in the mouse brain, potentially associated to a novel and biologically relevant function of this naturally occurring compound.  相似文献   

9.
In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions affecting host G6PD or GR induce increased sensitivity to oxidants. Hereditary G6PD deficiency is frequent in malaria endemic areas and provides protection against severe malaria. Furthermore, GR deficiency resulting from insufficient saturation of the enzyme with its prosthetic group FAD is common. Based on these naturally occurring phenomena, GR of malaria parasites and their host cells represent attractive antimalarial drug targets. Recently we were given the opportunity to examine invasion, growth, and drug sensitivity of three P. falciparum strains (3D7, K1, and Palo Alto) in the RBCs from three homozygous individuals with total GR deficiency resulting from mutations in the apoprotein. Invasion or growth in the GR-deficient RBCs was not impaired for any of the parasite strains tested. Drug sensitivity to chloroquine, artemisinin, and methylene blue was comparable to parasites grown in GR-sufficient RBCs and sensitivity towards paraquat and sodium nitroprusside was only slightly enhanced. In contrast, membrane deposition of hemichromes as well as the opsonizing complement C3b fragments and phagocytosis were strongly increased in ring-infected RBCs of the GR-deficient individuals compared to ring-infected normal RBCs. Also, in one of the individuals, membrane-bound autologous IgGs were significantly enhanced. Thus, based on our in vitro data, GR deficiency and drug-induced GR inhibition may protect from malaria by inducing enhanced ring stage phagocytosis rather than by impairing parasite growth directly.  相似文献   

10.
Transforming growth factor-β (TGF-β) plays a pivotal role in the fibrogenic action involved in the induction of connective tissue growth factor (CTGF), extracellular matrix and fibroblast transformation. Smad3 mediates TGF-β signaling related to the fibrotic response. In human lung fibroblasts or bronchial smooth muscle cells, we demonstrated that an increase in the intracellular glutathione level suppressed TGF-β1-induced phosphorylation of Smad3, while inhibiting TGF-β1-induced expressions of CTGF, collagen type1, fibronectin and transformation into myofibroblasts, which are characterized by the expression of α-smooth muscle actin. These data indicate that the intracellular glutathione redox status regulates TGF-β-induced fibrogenic effects through Smad3 activation.  相似文献   

11.
Two hundred thirteen cytochrome P450 (P450) genes were collected from bacteria and expressed based on an Escherichia coli expression system to test their hydroxylation ability to testosterone. Twenty-four P450s stereoselectively monohydroxylated testosterone at the 2α-, 2β-, 6β-, 7β-, 11β-, 12β-, 15β-, 16α-, and 17-positions (17-hydroxylation yields 17-ketoproduct). The hydroxylation site usage of the P450s is not the same as that of human P450s, while the 2α-, 2β-, 6β-, 11β-, 15β-, 16α-, and 17-hydroxylation are reactions common to both human and bacterial P450s. Most of the testosterone hydroxylation catalyzed by bacterial P450s is on the β face.  相似文献   

12.
The release of glutathione from astroglial cells was investigated using astroglia-rich primary cultures prepared from the brains of newborn rats. These cells release glutathione after onset of an incubation in a glucose-containing minimal medium. The amount of extracellular glutathione increased with the time of incubation, although the accumulation slowed down gradually. An elevated rate of increase of the glutathione concentration in the incubation medium was found if the astroglial ectoenzyme -glutamyl transpeptidase was inhibited by acivicin. The activity of -glutamyl transpeptidase in astroglia-rich primary cultures, which was found to be 1.9 ± 0.3 nmol/(min × mg protein), was markedly reduced if the cells had been incubated in the presence of acivicin. After 2 h of incubation with acivicin half-maximal and maximal inhibition of -glutamyl transpeptidase activity was found at concentrations of about 5 M and 50 M, respectively. In the presence of acivicin at a concentration above 10 M the glutathione content found released from astroglial cells apparently increased almost proportional to time for up to 10 h. Under these conditions the average rate of release was 2.1 ± 0.3 nmol/(h × mg protein) yielding after a 10 h incubation an extracellular glutathione content three times that of the medium of cells incubated without inhibitor. Half-maximal and maximal effects on the level of extracellular glutathione were found at 4 M and 50 M acivicin, respectively. After a 10 h incubation with acivicin the intracellular content of glutathione was reduced to 75% of the level of untreated astroglial cultures. These results suggest that glutathione released from astroglial cells can serve as substrate for the ectoenzyme -glutamyl transpeptidase of these cells.  相似文献   

13.
Monochlorobimane (MCB) is often used to visualize glutathione (GSH) levels in cultured cells, since it is quickly converted to a fluorescent GSH conjugate (GS–MCB). To test for consequences of MCB application on the GSH metabolism of astrocytes, we have studied rat astrocyte-rich primary cultures as model system. MCB caused a concentration dependent rapid decrease in the cellular GSH content. Simultaneously, a transient accumulation of GS–MCB in the cells was observed with a maximal content 5 min after MCB application. The cellular accumulation was followed by a rapid release of GS–MCB into the medium with a maximal initial export rate of 27.9 ± 6.5 nmol h−1 mg protein−1. Transporters of the family of multidrug resistance proteins (Mrps) are likely to be involved in this export, since the Mrp inhibitor MK571 lowered the export rate by 60%. These data demonstrate that, due to its rapid export from astrocytes, GS–MCB is only under well-defined conditions a reliable indicator of the cellular GSH concentration and that MK571 can be used to maintain maximal GS–MCB levels in astrocytes.  相似文献   

14.
Summary Components of the -glutamyl cycle, including thiols, glutathione (GSH) and -glutamyl transpeptidase (-GT), were localized in the nasal mucosae of rats using histochemical and immunohistochemical methods. In olfactory mucosa, thiols were widely distributed, with intense staining in the mucociliary complex (MC), basal cells, acinar cells of Bowman's glands (BG), and olfactory nerve bundles, and with moderate staining in olfactory receptor neurons (ORNs). GSH was localized in MC, BG acinar cells, nerve bundles and, to a lesser extent, in ORNs. -GT immunoreactivity was restricted to the MC and to basolateral and apical membranes of BG acinar and duct cells. The basolateral membrane of BG acinar cells, located in close association with blood vessels and connective tissue, showed granule-like immunoreactivity. Inrespiratory mucosa, all three compounds were localized in the MC and acinar cells of respiratory glands (RG). In the MC, -GT immunoreactivity was associated primarily with brush borders of ciliated cells. Granular immunoreactivity was also apparent in the supranuclear region of RG acinar cells. These results demonstrate that components of the -glutamyl cycle are localized in olfactory and respiratory glands, and that they are secreted into the mucus, where they may mediate perireceptor events such as detoxification and/or solubilization of air-borne xenobiotics, toxicants and odorants.  相似文献   

15.
A glutathione transferase (PfGST) isolated from Plasmodium falciparum has been associated with chloroquine resistance. A range of natural products including malagashanine (MG) were screened for inhibition of PfGST by a GST assay with 1-chloro-2,4-dinitrobenzene as a substrate. Only the sesquiterpene (JBC 42C), the bicoumarin (Tral-1), ellagic acid and curcumin, were shown to be potent inhibitors of PfGST with IC50 values of 8.5, 12, 50 and 69 μM, respectively. Kinetic studies were performed on PfGST using ellagic acid as an inhibitor. Uncompetitive and mixed types of inhibition were obtained for glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB). The Ki for GSH and CDNB were ?0.015?μM and 0.011?μM, respectively. Malagashanine (100?µM) only reduced the activity of PfGST to 80% but showed a time-dependent inactivation of PfGST with a t1/2 of 34 minutes compared to >120 minutes in the absence of MG or in the presence of 5?mM GSH. This work facilitates the understanding of the interaction of PfGST with some plant derived compounds.  相似文献   

16.
Glutathione (GSH) is a low molecular weight thiol compound that plays many roles in photosynthetic organisms. We utilized a ΔgshB (glutathione synthetase) mutant strain as a tool to evaluate the role of GSH in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803), a model photosynthetic organism. The ΔgshB mutant does not synthesize glutathione, but instead accumulates the GSH precursor, γ-glutamylcysteine (γ-EC), to millimolar levels. We found that γ-EC was sufficient to permit cellular proliferation during optimal conditions, but not when cells were exposed to conditions promoting oxidative stress. Furthermore, we found that many factors affecting growth rate and photosynthetic activities strongly influenced cellular thiol content. Here, we are providing some additional insights into the role of GSH and γ-EC in Synechocystis 6803 during conditions promoting oxidative stress.Key words: redox, reactive oxygen species, cyanobacteria, photosynthesis, photosystem I, photosystem II, methyl viologen, metal, cadmium, arsenate, selenate  相似文献   

17.
The elucidation of factors that contribute to cell viability loss is presently compromised by the lack of a universal measure that quantifies “stress.” We have investigated mechanisms of viability loss in plant seeds to find a reliable marker of stress response. Oxidative damage has previously been correlated with degenerative processes and death, but how exactly this contributes to viability loss is unknown. We show in four species subjected to ageing or desiccation that seed viability decreased by 50% when the half-cell reduction potential of glutathione (EGSSG/2GSH), a major cellular antioxidant and redox buffer, increased to −180 to −160 mV. We then conducted a metaanalysis of data representative of 13 plant and fungal orders to show that plant stress generally becomes lethal when EGSSG/2GSH exceeds −160 mV. We put forward that this change in EGSSG/2GSH is part of the signaling cascade that initiates programmed cell death (PCD), finally causing internucleosomal DNA fragmentation in the final, or execution phase, of PCD. EGSSG/2GSH is therefore a universal marker of plant cell viability and allows us to predict whether a seed will live, germinate, and produce a new plant, or if it will die.  相似文献   

18.
By employing an ELISA for detection of glutathione S-transferase-π (GST-π) established in our laboratory, gel filtration profiles of GST-π in the plasma of normal subjects and patients with malignant tumors were investigated. The results showed that the plasma GST-π for both of these groups was approximately half the molecular size of placental GST-π used as a standard control. Similar analyses were performed on GST-π of platelets and cultured cancer cells, which are considered to be the main sources of the GST-π in the plasma of normal subjects and cancer patients, respectively. The results indicated that the GST-π in both the centrifuged supernatants of aggregated platelets and in the culture medium of cancer cells was about half of the molecular size of intact GST-π. Morover, the GST-π in the culture medium was shown to have an N-terminus and a C-terminus, by analysis with specific ELISA. Western blot analysis of the GST-π in the culture medium detected a single band migrating at 23 kDa, confirming that the extracellular GST-π was the monomer, not a cleaved form of intact GST-π. The release of GST-π from cancer cells was suppressed at 4°C, or by sodium azide, but not suppressed by colchicine or cytochalasin B. These findings suggest that the GST-π may be released by an energy-dependent, active process, and not by a secretion mechanism.  相似文献   

19.
20.
The aim of this study was to determine the effects of glutathione (GSH) on trachea smooth muscle tension in view of previously reported interactions between GSH and nitric oxide (NO) (Gaston B. Biochim Biophys Acta 1411: 323-333, 1999; Kelm M. Biochim Biophys Acta 1411: 273-289, 1999; and Kharitonov VG, Sundquist AR, and Sharma VS. J Biol Chem 270: 28158-28164, 1995) and the high (millimolar) concentrations of GSH in trachea epithelium (Rahman I, Li XY, Donaldson K, Harrison DJ, and MacNee W. Am J Physiol Lung Cell Mol Physiol 269: L285-L292, 1995). GSH and other thiols (1.0-10 mM) dose dependently decreased the tension in isolated guinea pig tracheas. Relaxations by GSH were paralleled with sevenfold increased nitrite levels (P < 0.05) in the tracheal effluent, suggesting an interaction between GSH and NO. However, preincubation with a NO scavenger did not reduce the relaxations by GSH or its NO adduct, S-nitrosoglutathione (GSNO). Inhibition of guanylyl cyclase inhibited the relaxations induced by GSNO, but not by GSH. Blocking potassium channels, however, completely abolished the relaxing effects of GSH (P < 0.05). Preincubation of tracheas with GSH significantly (P < 0.05) suppressed hyperreactivity to histamine as caused by removal of tracheal epithelium. These data indicate that GSH plays a role in maintaining tracheal tone. The mechanism is probably an antioxidative action of GSH itself rather than an action of NO or GSNO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号