首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.  相似文献   

2.
3.
Spirochetes causing Lyme borreliosis are obligate parasites that can only be found in a tick vector or a vertebrate host. The ability to survive in these two disparate environments requires up and downregulation of specific genes by regulatory circuits that remain largely obscure. In this work on the Lyme spirochete, B. burgdorferi, we show that a disruption of the hrpA gene, which encodes a putative RNA helicase, results in a complete loss in the ability of the spirochetes to infect mice by needle inoculation. Studies of protein expression in culture by 2D gels revealed a change in the expression of 33 proteins in hrpA clones relative to the wild-type parent. Quantitative characterization of protein expression by iTRAQ analysis revealed a total of 187 differentially regulated proteins in an hrpA background: 90 downregulated and 97 upregulated. Forty-two of the 90 downregulated and 65 of the 97 upregulated proteins are not regulated under any conditions by the previously reported regulators in B. burgdorferi (bosR, rrp2, rpoN, rpoS or rrp1). Downregulated and upregulated proteins also fell into distinct functional categories. We conclude that HrpA is part of a new and distinct global regulatory pathway in B. burgdorferi gene expression. Because an HrpA orthologue is present in many bacteria, its participation in global regulation in B. burgdorferi may have relevance in other bacterial species where its function remains obscure. We believe this to be the first report of a role for an RNA helicase in a global regulatory pathway in bacteria. This finding is particularly timely with the recent growth of the field of RNA regulation of gene expression and the ability of RNA helicases to modulate RNA structure and function.  相似文献   

4.
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC‐type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand‐binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high‐resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate‐binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215‐0218 function as a phosphate transporter for B. burgdorferi.  相似文献   

5.
Borrelia burgdorferi, the causative agent of Lyme disease, is a highly motile spirochete, and motility, which is provided by its periplasmic flagella, is critical for every part of the spirochete's enzootic life cycle. Unlike externally flagellated bacteria, spirochetes possess a unique periplasmic flagellar structure called the collar. This spirochete‐specific novel component is linked to the flagellar basal body; however, nothing is known about the proteins encoding the collar or their function in any spirochete. To identify a collar protein and determine its function, we employed a comprehensive strategy that included genetic, biochemical, and microscopic analyses. We found that BB0286 (FlbB) is a novel flagellar motor protein, which is located around the flagellar basal body. Deletion of bb0286 has a profound effect on collar formation, assembly of other flagellar structures, morphology, and motility of the spirochete. Orientation of the flagella toward the cell body is critical for determination of wild‐type spirochete's wave‐like morphology and motility. Here, we provide the first evidence that FlbB is a key determinant of normal orientation of the flagella and collar assembly.  相似文献   

6.
Zoonotic pathogens that cause devastating morbidity and mortality in humans may be relatively harmless in their natural reservoir hosts. The tick-borne bacterium Borrelia burgdorferi causes Lyme disease in humans but few studies have investigated whether this pathogen reduces the fitness of its reservoir hosts under natural conditions. We analyzed four years of capture-mark-recapture (CMR) data on a population of white-footed mice, Peromyscus leucopus, to test whether B. burgdorferi and its tick vector affect the survival of this important reservoir host. We used a multi-state CMR approach to model mouse survival and mouse infection rates as a function of a variety of ecologically relevant explanatory factors. We found no effect of B. burgdorferi infection or tick burden on the survival of P. leucopus. Our estimates of the probability of infection varied by an order of magnitude (0.051 to 0.535) and were consistent with our understanding of Lyme disease in the Northeastern United States. B. burgdorferi establishes a chronic avirulent infection in their rodent reservoir hosts because this pathogen depends on rodent mobility to achieve transmission to its sedentary tick vector. The estimates of B. burgdorferi infection risk will facilitate future theoretical studies on the epidemiology of Lyme disease.  相似文献   

7.
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B. burgdorferi and its orthologous protein BSE31 (BSPA14S_RS05060 gene product) from B. spielmanii. BBE31 is known to be important for the transfer of B. burgdorferi from the gut to the hemolymph in the tick after a tick bite. While BBE31 exerts its function by interacting with the Ixodes scapularis tick gut protein TRE31, structural and mass spectrometry data revealed that BBE31 has a glutathione (GSH) covalently attached to Cys142 suggesting that the protein may have acquired some additional functions in contrast to its orthologous protein BSE31, which lacks any interactions with GSH. In the current study, in addition to analyzing the potential reasons for GSH binding, the three-dimensional structure of BBE31 provides new insights into the molecular details of the transmission process as the protein plays an important role in the initial phase before the spirochete is physically transferred to the new host. This knowledge will be potentially used for the development of new strategies to fight against Lyme disease.  相似文献   

8.
While 18 putative RNA helicases are involved in ribosome biogenesis in Saccharomyces cerevisiae, their enzymatic properties have remained largely biochemically uncharacterized. To better understand their function, we examined the enzymatic properties of Dpb8, a DExD/H box protein previously shown to be required for the synthesis of the 18S rRNA. As expected for an RNA helicase, we demonstrate that recombinant Dbp8 has ATPase activity in vitro, and that this activity is dependent on an intact ATPase domain. Strikingly, we identify Esf2, a nucleolar putative RNA binding protein, as a binding partner for Dbp8, and show that it enhances Dbp8 ATPase activity by decreasing the KM for ATP. Thus, we have uncovered Esf2 as the first example of a protein co-factor that has a stimulatory effect on a nucleolar RNA helicase. We show that Esf2 can bind to pre-rRNAs and speculate that it may function to bring Dbp8 to the pre-rRNA, thereby both regulating its enzymatic activity and guiding Dbp8 to its site of action.  相似文献   

9.
Loss of function of the RNA helicase maleless (MLE) in Drosophila melanogaster leads to male-specific lethality due to a failure of X chromosome dosage compensation. MLE is presumably involved in incorporating the non-coding roX RNA into the dosage compensation complex (DCC), which is an essential but poorly understood requirement for faithful targeting of the complex to the X chromosome. Sequence comparison predicts several RNA-binding domains in MLE but their properties have not been experimentally verified. We evaluated the RNA-binding characteristics of these conserved motifs and their contributions to RNA-stimulated ATPase activity, to helicase activity, as well as to the targeting of MLE to the nucleus and to the X chromosome territory. We find that RB2 is the dominant, conditional RNA-binding module, which is indispensable for ATPase and helicase activity whereas the N-terminal RB1 motif does not bind RNA, but is involved in targeting MLE to the X chromosome. The C-terminal domain containing a glycine-rich heptad repeat adds potential dimerization and RNA-binding surfaces which are not required for helicase activity.  相似文献   

10.
RNA helicases are essential for virtually all cellular processes, however, their regulation is poorly understood. The activities of eight RNA helicases are required for pre-mRNA splicing. Amongst these, Brr2p is unusual in having two helicase modules, of which only the amino-terminal helicase domain appears to be catalytically active. Using genetic and biochemical approaches, we investigated interaction of the carboxy-terminal helicase module, in particular the carboxy-terminal Sec63-2 domain, with the splicing RNA helicase Prp16p. Combining mutations in BRR2 and PRP16 suppresses or enhances physical interaction and growth defects in an allele-specific manner, signifying functional interactions. Notably, we show that Brr2p Sec63-2 domain can modulate the ATPase activity of Prp16p in vitro by interfering with its ability to bind RNA. We therefore propose that the carboxy-terminal helicase module of Brr2p acquired a regulatory function that allows Brr2p to modulate the ATPase activity of Prp16p in the spliceosome by controlling access to its RNA substrate/cofactor.  相似文献   

11.
In the Thousand Islands region of eastern Ontario, Canada, Lyme disease is emerging as a serious health risk. The factors that influence Lyme disease risk, as measured by the number of blacklegged tick (Ixodes scapularis) vectors infected with Borrelia burgdorferi, are complex and vary across eastern North America. Despite study sites in the Thousand Islands being in close geographic proximity, host communities differed and both the abundance of ticks and the prevalence of B. burgdorferi infection in them varied among sites. Using this archipelago in a natural experiment, we examined the relative importance of various biotic and abiotic factors, including air temperature, vegetation, and host communities on Lyme disease risk in this zone of recent invasion. Deer abundance and temperature at ground level were positively associated with tick abundance, whereas the number of ticks in the environment, the prevalence of B. burgdorferi infection, and the number of infected nymphs all decreased with increasing distance from the United States, the presumed source of this new endemic population of ticks. Higher species richness was associated with a lower number of infected nymphs. However, the relative abundance of Peromyscus leucopus was an important factor in modulating the effects of species richness such that high biodiversity did not always reduce the number of nymphs or the prevalence of B. burgdorferi infection. Our study is one of the first to consider the interaction between the relative abundance of small mammal hosts and species richness in the analysis of the effects of biodiversity on disease risk, providing validation for theoretical models showing both dilution and amplification effects. Insights into the B. burgdorferi transmission cycle in this zone of recent invasion will also help in devising management strategies as this important vector-borne disease expands its range in North America.  相似文献   

12.
The genetic diversity of Borrelia burgdorferi sensu lato was assessed in a focus of Lyme borreliosis in southern Britain dominated by game birds. Ticks, rodents, and pheasants were analyzed for spirochete infections by PCR targeting the 23S-5S rRNA genes, followed by genotyping by the reverse line blot method. In questing Ixodes ricinus ticks, three genospecies of B. burgdorferi sensu lato were detected, with the highest prevalences found for Borrelia garinii and Borrelia valaisiana. B. burgdorferi sensu stricto was rare (<1%) in all tick stages. Borrelia afzelii was not detected in any of the samples. More than 50% of engorged nymphs collected from pheasants were infected with borreliae, mainly B. garinii and/or B. valaisiana. Although 19% of the rodents harbored B. burgdorferi sensu stricto and/or B. garinii in internal organs, only B. burgdorferi sensu stricto was transmitted to xenodiagnostic tick larvae (it was transmitted to 1% of the larvae). The data indicate that different genospecies of B. burgdorferi sensu lato can be maintained in nature by distinct transmission cycles involving the same vector tick species but different vertebrate host species. Wildlife management may have an influence on the relative risk of different clinical forms of Lyme borreliosis.  相似文献   

13.
Rho and RNA: models for recognition and response   总被引:12,自引:1,他引:11  
  相似文献   

14.
15.
We have identified GpsA, a predicted glycerol-3-phosphate dehydrogenase, as a virulence factor in the Lyme disease spirochete Borrelia (Borreliella) burgdorferi: GpsA is essential for murine infection and crucial for persistence of the spirochete in the tick. B. burgdorferi has a limited biosynthetic and metabolic capacity; the linchpin connecting central carbohydrate and lipid metabolism is at the interconversion of glycerol-3-phosphate and dihydroxyacetone phosphate, catalyzed by GpsA and another glycerol-3-phosphate dehydrogenase, GlpD. Using a broad metabolomics approach, we found that GpsA serves as a dominant regulator of NADH and glycerol-3-phosphate levels in vitro, metabolic intermediates that reflect the cellular redox potential and serve as a precursor for lipid and lipoprotein biosynthesis, respectively. Additionally, GpsA was required for survival under nutrient stress, regulated overall reductase activity and controlled B. burgdorferi morphology in vitro. Furthermore, during in vitro nutrient stress, both glycerol and N-acetylglucosamine were bactericidal to B. burgdorferi in a GlpD-dependent manner. This study is also the first to identify a suppressor mutation in B. burgdorferi: a glpD deletion restored the wild-type phenotype to the pleiotropic gpsA mutant, including murine infectivity by needle inoculation at high doses, survival under nutrient stress, morphological changes and the metabolic imbalance of NADH and glycerol-3-phosphate. These results illustrate how basic metabolic functions that are dispensable for in vitro growth can be essential for in vivo infectivity of B. burgdorferi and may serve as attractive therapeutic targets.  相似文献   

16.
17.
Hfq is a global regulatory RNA‐binding protein. We have identified and characterized an atypical Hfq required for gene regulation and infectivity in the Lyme disease spirochete Borrelia burgdorferi. Sequence analyses of the putative B. burgdorferi Hfq protein revealed only a modest level of similarity with the Hfq from Escherichia coli, although a few key residues are retained and the predicted tertiary structure is similar. Several lines of evidence suggest that the B. burgdorferi bb0268 gene encodes a functional Hfq homologue. First, the hfqBb gene (bb0268) restores the efficient translation of an rpoS::lacZ fusion in an E. coli hfq null mutant. Second, the Hfq from B. burgdorferi binds to the small RNA DsrABb and the rpoS mRNA. Third, a B. burgdorferi hfq null mutant was generated and has a pleiotropic phenotype that includes increased cell length and decreased growth rate, as found in hfq mutants in other bacteria. The hfqBb mutant phenotype is complemented in trans with the hfq gene from either B. burgdorferi or, surprisingly, E. coli. This is the first example of a heterologous bacterial gene complementing a B. burgdorferi mutant. The alternative sigma factor RpoS and the outer membrane lipoprotein OspC, which are induced by increased temperature and required for mammalian infection, are not upregulated in the hfq mutant. Consequently, the hfq mutant is not infectious by needle inoculation in the murine model. These data suggest that Hfq plays a key role in the regulation of pathogenicity factors in B. burgdorferi and we hypothesize that the spirochete has a complex Hfq‐dependent sRNA network.  相似文献   

18.
Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.  相似文献   

19.
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar–stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.  相似文献   

20.
Lyme disease, due to infection with the Ixodes-tick transmitted spirochete Borrelia burgdorferi, is the most common tick-transmitted disease in the northern hemisphere. Our understanding of the tick-pathogen-vertebrate host interactions that sustain an enzootic cycle for B. burgdorferi is incomplete. In this article, we describe a method for imaging the feeding of Ixodes scapularis nymphs in real-time using two-photon intravital microscopy and show how this technology can be applied to view the response of Lyme borrelia in the skin of an infected host to tick feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号