首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
There is growing evidence that climate and anthropogenic influences on marine ecosystems are largely manifested by changes in species spatial dynamics. However, less is known about how shifts in species distributions might alter predator-prey overlap and the dynamics of prey populations. We developed a general approach to quantify species spatial overlap and identify the biotic and abiotic variables that dictate the strength of overlap. We used this method to test the hypothesis that population abundance and temperature have a synergistic effect on the spatial overlap of arrowtooth flounder (predator) and juvenile Alaska walleye pollock (prey, age-1) in the eastern Bering Sea. Our analyses indicate that (1) flounder abundance and temperature are key variables dictating the strength of flounder and pollock overlap, (2) changes in the magnitude of overlap may be largely driven by density-dependent habitat selection of flounder, and (3) species overlap is negatively correlated to juvenile pollock recruitment when flounder biomass is high. Overall, our findings suggest that continued increases in flounder abundance coupled with the predicted long-term warming of ocean temperatures could have important implications for the predator-prey dynamics of arrowtooth flounder and juvenile pollock. The approach used in this study is valuable for identifying potential consequences of climate variability and exploitation on species spatial dynamics and interactions in many marine ecosystems.  相似文献   

2.
Juvenile walleye pollock, Theragra chalcogramma, is the dominant forage fish on the continental shelf of the Gulf of Alaska, yet little is known about the feeding habits of this important interval of pollock life history. The taxonomic composition and size of prey found in the stomachs of age-0 juveniles collected at three nearshore locations in the Gulf of Alaska in September 1990 were compared to the composition and size of zooplankton collected in concurrent plankton tows. The maximum length of prey consumed increased dramatically over the length range of pollock examined (58–110 mm) from approximately 7 mm to 30 mm, due mainly to the consumption of large euphausiids and chaetognaths by the bigger individuals. The maximum width of prey changed little over this size range although there was a general increase in prey width with increasing predator size. The minimum prey length and width did not change with increasing fish size. Juvenile pollock generally selected the larger prey sizes relative to what was available. Juvenile pollock showed a marked preference for adult euphausiids and decapod larvae and an avoidance of copepods and chaetognaths relative to the numbers collected in net tows. These results are discussed relative to the feeding ecology of these juvenile fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Synopsis The effect of two contrasting fertilization regimes on juvenile walleye growth, survival and harvest was tested in six identical rearing ponds treated with fermented soybean meal at either a constant (36 g m–3week–1) or a progressively reduced (32 to 0 g m–3week–1) rate. Walleye length, percent survival and biomass harvest in constant fertilization ponds were 32, 83 and 294% greater, respectively, than those of reduced fertilization ponds. Chironomid larvae and pupae were the dominant prey (in terms of biomass) in juvenile walleye larger than 22 mm TL. Mean chironomid biomass was significantly higher in the constant fertilization ponds (5.1 vs. 1.7 g dry wt m–2), particularly after peak emergence around week 4. Zooplankton were less important prey after week 2, and mean zooplankton density was not significantly different between treatments. From these data we conclude that better walleye performance in the constant fertilization ponds was due to higher chironomid density during the last half of the experiment. Our findings are reviewed in light of current knowledge of juvenile walleye feeding ecology and contemporary pond culture procedures.  相似文献   

4.
A bioenergetics model for juvenile age‐0 year walleye pollock Theragra chalcogramma was applied to a spatially distinct grid of samples in the western Gulf of Alaska to investigate the influence of temperature and prey quality on size‐specific growth. Daily growth estimates for 50, 70 and 90 mm standard length (LS) walleye pollock during September 2000 were generated using the bioenergetics model with a fixed ration size. Similarities in independent estimates of prey consumption generated from the bioenergetics model and a gastric evacuation model corroborated the performance of the bioenergetics model, concordance correlation (rc) = 0·945, lower 95% CL (transformed) (L1) = 0·834, upper 95% CL (transformed) (L2) = 0·982, P < 0·001. A mean squared error analysis (MSE) was also used to partition the sources of error between both model estimates of consumption into a mean component (MC), slope component (SC), and random component (RC). Differences between estimates of daily consumption were largely due to differences in the means of estimates (MC= 0·45) and random sources (RC= 0·49) of error, and not differences in slopes (SC= 0·06). Similarly, daily growth estimates of 0·031–0·167 g day?1 generated from the bioenergetics model was within the range of growth estimates of 0·026–0·190 g day?1 obtained from otolith analysis of juvenile walleye pollock. Temperature and prey quality alone accounted for 66% of the observed variation between bioenergetics and otolith growth estimates across all sizes of juvenile walleye pollock. These results suggest that the bioenergetics model for juvenile walleye pollock is a useful tool for evaluating the influence of spatially variable habitat conditions on the growth potential of juvenile walleye pollock.  相似文献   

5.
In 1976 the North Pacific climate shifted, resulting in an average increase of the water temperature. In the Gulf of Alaska the climate shift was followed (i.e. early 1980s) by a gradual but dramatic increase in the abundance of groundfish species that typically prey on pre-recruitment stages of walleye pollock. In the present study we used a previously parameterized model to investigate the effect of these climate and biological changes on the recruitment dynamics of walleye pollock in the Gulf of Alaska. Simulations covered the 1970-2000 time frame and emphasized the medium-to-long temporal scale (i.e. about 5-10 years) of environmental variability. Results showed that during periods characterized by high sea surface temperature and high predation on juvenile pollock stages, recruitment variability and magnitude were below average, and recruitment control was delayed to stages older than the 0-group. Opposite dynamics (i.e. high abundance and variability, and early recruitment control) occurred during periods characterized by low temperature and predation. These results are in general agreement with empirical observations, and allowed us to formulate causal explanations for their occurrence. We interpreted the delay of recruitment control and the reduction of variability as an effect of increased constraint on the abundance of post age-0 stages, in turn imposed by high density dependence and predation mortality. On the other hand, low density-dependence and predation favoured post age-0 survival, and allowed for an unconstrained link between larval and recruitment abundance. Our findings demonstrate that the dominant mechanisms of pollock survival change over contrasting climate regimes. Such changes may in turn cause a phase transition of recruitment dynamics with profound implications for the management of the entire stock.  相似文献   

6.
The diet of adult female northern fur seals ( Callorhinus ursinus ) is examined through the analysis of faecal material collected during the summer breeding season at three breeding locations in the Bering Sea: St. Paul Island (1988, 1990) and St. George Island (1988, 1990) of the Pribilof Islands Group (USA), and Medny Island (1990) of the Commander Islands Group (Russia). Prey consumption varies annually and accordingly with the physical and biological environment surrounding each island. Juvenile walleye pollock ( Theragra chalcogramma ) is the most common prey of northern fur seals from St. Paul Island; the island is surrounded by a broad neritic environment with widely separated frontal zones and is the greatest distance from the continental shelf-edge. Gonatid squid ( Gonatopsis borealis/Berryteuthis magister and Gonatus madokail Gonatus middendorffi ) were the most common prey of northern fur seals from Medny Island; the island is surrounded by a compressed neritic environment and is adjacent to the continental shelf-edge and the oceanic marine environment. A combination of walleye pollock and gonatid squid is consumed by northern fur seals from St. George Island; the island has a surrounding oceanographic environment intermediate between the other two islands.
Variability in predation on walleye pollock is consistent with fishery information concerning the relative abundance and availability of walleye pollock around St. George and St. Paul Islands. The abundance and availability of these prey resources during the summer breeding season are key factors which influence the health and growth of the northern fur seal populations in the Bering Sea.  相似文献   

7.
8.
The growth, nucleic acid and protein contents of walleye pollock Theragra chalcogramma larvae reared at prey densities of 10, 30, 50, and 500 prey 1-1 were measured for the first 9 days after the feeding initiation at 6° C. Incremental growth rates of larvae (mm day-1) were low and variable for the first 7 days after feeding initiation. Growth rates and rates of RNA, DNA, and protein accumulation by larvae reared at 500 prey 1-1 were positive while those of larvae reared at the lower prey levels did not differ significantly from zero. The RNA/DNA ratio was variable and exhibited no significant trend among food treatments. Estimates of instantaneous protein growth rates ranged from - 6·7 to 13·2% day-1 at food densities of 10 and 500 prey 1-1, respectively, and were moderately correlated with larval RNA/DNA ratios ( r = 0·628). The results suggest that in situ protein growth rates of first-feeding pollock larvae may be influenced by prey fields within the range of ambient food densities reported for sub-Arctic ecosystems.  相似文献   

9.
10.
A bioenergetics model was parameterized for age-0 walleye pollock, Theragra chalcogramma , based on a synthesis of literature data. The sensitivity of the new parameters was tested by individual parameter perturbation (IPP) analysis. The model was applied to estimate individual and total cohort food consumption of age-0 pollock in two areas of high pollock density in the Gulf of Alaska during the summer of 1990. Total cohort consumption was compared with zooplankton biomass and production estimates for the same areas and times of the year. The model was also used to examine the bioenergetic implications of age-0 pollock diel vertical migration through a thermal gradient. During a 1-month bioenergetics simulation, individual daily consumption decreased from 16·0 to 6·0% of wet body weight. Daily ration estimates corresponded well with independent field estimates of daily ration for the same areas and time of the year. Comparison of total cohort consumption with prey availability (production and biomass) indicated minimal potential for food limitation. Bioenergetic optimization of growth can be a potential benefit of diel vertical migration to age-0 pollock, however more information on prey density and distribution is needed to test this hypothesis thoroughly.  相似文献   

11.
The spatial distribution of eggs and larvae of the walleye pollock Theragra chalcogramma is considered in respect to dynamics of oceanologic processes, nutrients, chlorophyll а and zooplankton off the northeastern coast of Sakhalin Island in spring 2012. It is shown that the effect of severe temperature regime in the near-bottom horizons in the western Sea of Okhotsk during the spawning period of walleye pollock becomes milder due to specific features of water dynamics. The egg distribution is determined by mesoscale eddies in the region. The species survival depends on the effect of such environmental factors as freshwater discharge from the Amur River, eddy structure in waters of the Sea of Okhotsk, and dynamics of phytoplankton and zooplankton development.  相似文献   

12.
Growth and survival of larval fishes is highly variable and unpredictable. Our limited understanding of this variation constrains our ability to forecast population dynamics and effectively manage fisheries. Here we show that daily growth rates of a coral reef fish (the sixbar wrasse, Thalassoma hardwicke) are strongly lunar-periodic and predicted by the timing of nocturnal brightness: growth was maximized when the first half of the night was dark and the second half of the night was bright. Cloud cover that obscured moonlight facilitated a ‘natural experiment’, and confirmed the effect of moonlight on growth. We suggest that lunar-periodic growth may be attributable to light-mediated suppression of diel vertical migrations of predators and prey. Accounting for such effects will improve our capacity to predict the future dynamics of marine populations, especially in response to climate-driven changes in nocturnal cloud cover and intensification of artificial light, which could lead to population declines by reducing larval survival and growth.  相似文献   

13.
Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus), during two breeding seasons. The first season had anomalously high sea-surface temperatures and ‘low’ prey availability, while the second was a season of below average sea-surface temperatures and ‘normal’ food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited.  相似文献   

14.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

15.
Synopsis Behavioral preference for a structured habitat (artificial seagrass) by juvenile walleye pollock,Theragra chalcogramma, was tested in controlled laboratory experiments. We monitored position of fish in 2000 1 tanks with and without artificial seagrass present in one half of the tank. In addition, we exposed walleye pollock to a predator model, assessing their response when a grass plot was available or unavailable as a potential refuge. In the absence of predators, the fish avoided the artificial seagrass, displaying a preference for the open water side of the experimental tanks. In the presence of a predator model, however, juvenile walleye pollock readily entered the artificial seagrass plots. In addition, they often remained in the grass canopy in proximity to the predator instead of moving out of the grass to avoid the predator (when no grass was present they consistently moved to the opposite side of the tank from the predator). The behavioral choices exhibited in this study suggest that juvenile walleye pollock modify habitat selection in response to perceived predation risk, and recognize the structure provided by artificial seagrass as a potential refuge.  相似文献   

16.
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality.  相似文献   

17.
Populations often exhibit a pronounced degree of individual variability and this can be important when constructing ecological models. In this paper, we revisit the role of inter-individual variability in population persistence and stability under predation pressure. As a case study, we consider interactions between a structured population of zooplankton grazers and their predators. Unlike previous structured population models, which only consider variability of individuals according to the age or body size, we focus on physiological and behavioural structuring. We first experimentally demonstrate a high degree of variation of individual consumption rates in three dominant species of herbivorous copepods (Calanus finmarchicus, Calanus glacialis, Calanus euxinus) and show that this disparity implies a pronounced variation in the consumption capacities of individuals. Then we construct a parsimonious predator-prey model which takes into account the intra-population variability of prey individuals according to behavioural traits: effectively, each organism has a ‘personality’ of its own. Our modelling results show that structuring of prey according to their growth rate and vulnerability to predation can dampen predator-prey cycles and enhance persistence of a species, even if the resource stock for prey is unlimited. The main mechanism of efficient top-down regulation is shown to work by letting the prey population become dominated by less vulnerable individuals when predator densities are high, while the trait distribution recovers when the predator densities are low.  相似文献   

18.
The foraging ecology of larval and juvenile fishes   总被引:1,自引:0,他引:1  
Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes.  相似文献   

19.
Steller sea lions (Eumetopias jubatus) were fed restricted iso-caloric amounts of Pacific herring (Clupea pallasi) or walleye pollock (Theragra chalcogramma) for 8–9 days, four times over the course of a year to investigate effects of season and prey composition on sea lion physiology. At these levels, the sea lions lost body mass at a significantly higher rate during winter (1.6 ± 0.14 kg day−1), and at a lower rate during summer (1.2 ± 0.32 kg day−1). Decreases in body fat mass and standard metabolic rates during the trials were similar throughout the seasons and for both diet types. The majority of the body mass that was lost when eating pollock derived from decreases in lipid mass, while a greater proportion of the mass lost when eating herring derived from decreases in lean tissue, except in the summer when the pattern was reversed. Metabolic depression was not observed during all trials despite the constant loss of body mass. Our study supports the hypothesis that restricted energy intake may be more critical to Steller sea lions in the winter months, and that the type of prey consumed (e.g., herring or pollock) may have seasonally specific effects on body mass and composition.  相似文献   

20.
Trout‐perch are abundant in many North American aquatic systems, but the ecological roles of trout‐perch as predators, competitors and prey remain relatively understudied. To elucidate the ecological role of trout‐perch in Saginaw Bay (Lake Huron, North America), the spatial and temporal diet composition was quantified and the frequency of occurrence of trout‐perch in diets of piscivorous walleye and yellow perch was evaluated. From May through November 2009–2010, trout‐perch and their potential predators and prey were collected monthly from five sites in Saginaw Bay using bottom‐trawls. Trout‐perch were abundant components of the Saginaw Bay fish community, and in 2009, represented 13.5% of fish collected in trawls, with only yellow perch (38%) and rainbow smelt (19.1%) being more common. Trout‐perch primarily consumed Chironomidae (84.0% of diet biomass) and exhibited strong, positive selection for Chironomidae and Amphipoda, suggesting that their diet preferences overlap with the economically important yellow perch and juvenile walleye. Energy content of trout‐perch averaged 4795 J g?1 wet and was similar to yellow perch (4662 J g?1 wet) and round goby (3740 J g?1 wet). Thus, they may provide a comparable food source for larger piscivorous fish. However, despite their high energy density, abundance, and spatial overlap with other fish prey species, trout‐perch were very rare in diets of piscivorous walleye and yellow perch in Saginaw Bay, indicating that trout‐perch are a weak conduit of energy transfer to higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号