首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large pelagic predators occupy high positions in food webs and could control lower trophic level species by direct and indirect ecological interactions. In this study we aimed to test the hypotheses: (1) pelagic predators are keystone species, and their removals could trigger impacts on the food chain; (2) higher landings of pelagic predators could trigger fishing impacts with time leading to a drop in the mean trophic level of catches; and (3) recovery in the pelagic predators populations, especially for sharks, could be achieved with fishing effort reduction. We performed a food web approach using an Ecopath with Ecosim model to represent the Southeastern and Southern Brazil, a subtropical marine ecosystem, in 2001. We then calibrated the baseline model using catch and fishing effort time series from 2001 to 2012. Afterwards, we simulated the impact of fishing effort changes on species and assessed the ecological impacts on the pelagic community from 2012 to 2025. Results showed that the model was well fitted to landing data for the majority of groups. The pelagic predators species were classified as keystone species impacting mainly on pelagic community. The ecosystem was resilient and fisheries seem sustainable at that time. However, the temporal simulation, from 2001 to 2012, revealed declines in the biomass of three sharks, tuna and billfish groups. It was possible observe declines in the mean trophic level of the catch and in the mean total length of landings. Longline fisheries particularly affected the sharks, billfish and swordfish, while hammerhead sharks were mostly impacted by gillnet fishery. Model simulations showed that large sharks’ biomasses could be recovered or maintained only after strong fishing effort reduction.  相似文献   

2.
Marine fisheries as ecological experiments   总被引:1,自引:0,他引:1  
There are many examples of ecological theory informing fishery management. Yet fisheries also provide tremendous opportunities to test ecological theory through large-scale, repeated, and well-documented perturbations of natural systems. Although treating fisheries as experiments presents several challenges, few comparable tests exist at the ecosystem scale. Experimental manipulations of fish populations in lakes have been widely used to develop and test ecological theory. Controlled manipulation of fish populations in open marine systems is rarely possible, but fisheries data provide a valuable substitute for such manipulations. To highlight the value of marine fisheries data, we review leading ecological theories that have been empirically tested using such data. For example, density dependence has been examined through meta-analysis of spawning stock and recruitment data to show that compensation (higher population growth) occurs commonly when populations are reduced to low levels, while depensation (the Allee effect) is rare. As populations decline, spatial changes typically involve populations contracting into high-density core habitats while abandoning less productive habitats. Fishing down predators may result in trophic cascades, possibly shifting entire ecosystems into alternate stable states, although alternate states can be maintained by both ecological processes and continued fishing pressure. Conversely, depleting low trophic level groups may affect central-place foragers, although these bottom–up effects rarely appear to impact fish—perhaps because many fish populations have been reduced to the point that they are no longer prey limited. Fisheries provide empirical tests for diversity–stability relations: catch data suggest that more diverse systems recover faster and provide more stable returns than less diverse systems. Fisheries have also provided examples of the tragedy of the commons, as well as counter-examples where common property resources have been managed successfully. We also address two barriers to use of fisheries data to answer ecological questions: differences in terminology for similar concepts and misuse of records of fishery landings (catch data) as a proxy for biomass trends.  相似文献   

3.
The catches and discards of trawlers, seiners and trammel netters were studied in the Algarve (southern Portugal) using observers onboard commercial fishing vessels. Species diversity was high, with 236 species recorded as occasionally, frequently or regularly discarded. Mean discard rates per trip were 0.13, 0.20, 0.27, 0.62 and 0.70, respectively, for trammel nets, demersal purse seines, pelagic purse seines, fish trawls and crustacean trawls, with high variability in terms of discard volume and discard rate. This was especially so for seiners where from 0 to 100% of the total catch might be discarded. No significant relationships were found between discard quantity or discard rate and characteristics of the fishing vessels sampled within each métier (total length, TAB, hp, kW). Based on the above discard rates and the official landings, it was estimated that in 1996, Algarve trawlers discarded 9000–13000 tonnes (t) while seiners discarded 5500–8200 t. Discarding practices in these fisheries are reviewed and the reasons for discarding are presented by species and métier basis. The results support the need for more studies on the factors contributing to discarding, variability in discard quantities and rates, the fate of discards and their importance to the marine ecosystem, and on ways of reducing by-catch and discarding in these fisheries.  相似文献   

4.
The interactions between seabirds and fisheries pose significant threats for the seabird species such as incidental capture. In contrast, several species of seabirds meet part of their energetic requirements through the use of fisheries discards. Knowledge about the relationship between at-sea distribution of Procellariiformes and fisheries is a key tool in marine ecosystem management. We analysed the spatio-temporal relationship between the areas used by 16 satellite-tracked breeding adults of the Southern Giant Petrel and fisheries distribution and catch at the Patagonian Shelf. We also determined the time spent by adults in different marine jurisdictions. Results indicated a marked spatio-temporal association between birds and fisheries, mainly trawlers. The Southern Giant Petrels concentrated their foraging effort over Argentinean waters. The use of an abundant and predictable food source provided by the fisheries discards may be one of the factors affecting the dynamics of the Southern Giant Petrel populations in Patagonia, Argentina.  相似文献   

5.
Fisheries catches represent a net export of mass and energy that can no longer be used by trophic levels higher than those fished. Thus, exploitation implies a depletion of secondary production of higher trophic levels (here the production of mass and energy by herbivores and carnivores in the ecosystem) due to the removal of prey. The depletion of secondary production due to the export of biomass and energy through catches was recently formulated as a proxy for evaluating the ecosystem impacts of fishing–i.e., the level of ecosystem overfishing. Here we evaluate the historical and current risk of ecosystem overfishing at a global scale by quantifying the depletion of secondary production using the best available fisheries and ecological data (i.e., catch and primary production). Our results highlight an increasing trend in the number of unsustainable fisheries (i.e., an increase in the risk of ecosystem overfishing) from the 1950s to the 2000s, and illustrate the worldwide geographic expansion of overfishing. These results enable to assess when and where fishing became unsustainable at the ecosystem level. At present, total catch per capita from Large Marine Ecosystems is at least twice the value estimated to ensure fishing at moderate sustainable levels.  相似文献   

6.
California's commercial and recreational fisheries support vibrant coastal economies and communities. Maintaining healthy fishing communities into the future requires a detailed understanding of their past. The California Department of Fish and Wildlife (CDFW) has been monitoring statewide fisheries landings and participation since 1916 and releases confidential versions of this data through authorized data requests and non-confidential summaries of this data in its quasi-annual landings reports. The non-confidential data published in the landings reports provide a rich history of California's fisheries but are scattered across 1000s of tables in 100 s of documents, limiting their accessibility to researchers, fishers, and other interested stakeholders. We reviewed the 58 landings reports published from 1929 to 2020 and extracted and carefully curated 13 datasets with long time series and wide public interest. These datasets include: (1) annual landings in pounds and value by port and species from 1941 to 2019; (2) annual number of commercial fishing vessels by length class from 1934 to 2020; (3) annual number of licensed commercial fishers by area of residence from 1916 to 2020; and (4) annual number of party boat (CPFV) vessels, anglers, and their total catch by species from 1936 to 2020. Notably, we harmonized port names, species common names, and species scientific names across all years and datasets. We make these curated datasets, collectively called the CALFISH database, publicly available to any interested stakeholder in the supplementary materials of this paper, on an open-access data-repository, and in the wcfish R package. These datasets can be used (1) to understand the historical context of California's fisheries; (2) for original research requiring only summaries of historical landings and participation data; and (3) to anticipate the likely characteristics of confidential data requested from the state. We conclude the paper by identifying key principles for increasing the accessibility and utility of historical fisheries landings and participation data.  相似文献   

7.
Many commercial fisheries seek to maximise the economic value of the catch that they bring ashore and market for human consumption by discarding undersize or low value fish. Information on the quantity, size and species composition of discarded fish is vital for stock assessments and for devising legislation to minimise the practice. However, except for a few major species, data are usually extremely sparse and reliant on observers aboard a small sample of fishing vessels. Expanding these data to estimate total regional discards is highly problematic. Here, we develop a method for utilising additional information from scientific trawl surveys to model the quantities of fish discarded by the commercial fisheries. As a case-study, we apply the model to the North Sea over the period 1978-2011, and show a long-term decline in the overall quantity of fish discarded, but an increase in the proportion of catch which is thrown away. The composition of discarded catch has shifted from predominantly (∼80%) roundfish, to >50% flatfish. Undersized plaice constitute the largest single fraction of discards, unchanged from the beginning of the 20th century. Overall, around 60% of discarded fish are rejected on the basis of size rather than for reasons of species value or quota restrictions. The analysis shows that much more information can be gained on discarding by utilising additional sources of data rather than relying solely on information gathered by observers. In addition, it is clear that reducing fishing intensity and rebuilding stocks is likely to be more effective at reducing discards in the long term, than any technical legislation to outlaw the practice in the short term.  相似文献   

8.
Accurate information on total catch and effort is essential for successful fisheries management. Officially reported landings, however, may be underestimates of total catch in many fisheries. We investigated the fishery for the nationally red-listed European lobster (Homarus gammarus) in south-eastern Norway. Probability-based strip transect surveys were used to count buoys in the study area in combination with catch per unit effort data obtained independently from volunteer catch diaries, phone interviews, and questionnaires. We estimate that recreational catch accounts for 65% of total catch in the study area. Moreover, our results indicate that only a small proportion (24%) of lobsters landed commercially were sold through the legal market and documented. Total estimated lobster catch was nearly 14 times higher than reported officially. Our study highlights the need for adequate catch monitoring and data collection efforts in coastal areas, presents a clear warning to resource managers that illegal, unreported and unregulated (IUU) fisheries in coastal areas should not be ignored, and shows the potential impact of recreational fisheries.  相似文献   

9.
The complex multi-gear, multi-species tropical fisheries in developing countries are poorly understood and characterising the landings from these fisheries is often impossible using conventional approaches. A rapid assessment method for characterising landings at fish markets, using an index of abundance and estimated weight within taxonomic groups, is described. This approach was developed for contexts where there are no detailed data collection protocols, and where consistent data collection across a wide range of fisheries types and geographic areas is required, regardless of the size of the site and scale of the landings. This methodology, which was demonstrated at seven fish landing sites/fish markets in southern Indonesia between July 2008 and January 2011, provides a rapid assessment of the abundance and diversity in the wild catch over a wide variety of taxonomic groups. The approach has wider application for species-rich fisheries in developing countries where there is an urgent need for better data collection protocols, monitoring future changes in market demographics, and evaluating health of fisheries.  相似文献   

10.
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator’s variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.  相似文献   

11.
The biology of elasmobranchs makes them very vulnerable to fishing pressure and there is increasing international concern over their exploitation. In northern Australia the stocks of some species may be shared with those in southern Indonesia. Indonesia has the highest landings of elasmobranchs worldwide (>100,000 t p.a.) and millions of Indonesian artisanal fishers rely heavily on elasmobranchs taken in target fisheries. They are also taken by industrial trawlers and as bycatch in pelagic tuna fisheries. This paper, resulting from a collaborative project between Australia and Indonesia, summarises the elasmobranch fisheries; the characteristics of the fisheries are outlined, the status of the stocks are assessed, and management options described and discussed. The project focussed on representative markets and fish landing sites in southern Indonesia from 2001 to 2005. Data were from market surveys, the records of the Indonesian Directorate General of Capture Fisheries, and from research cruises. Data from the ongoing tuna monitoring programme showed that shark bycatch from the tuna fleets forms about 11% of shark landings in Indonesia. Yield per recruit and related analyses were used to integrate biological information to indicate the productivity of each species to allow for management policy options and constraints. Research cruise data show that catch rates of elasmobranchs in the Java Sea declined by at least one order of magnitude between 1976 and 1997. The results indicate strongly that many of the shark and ray species in Indonesia are overfished and that the most effective management strategy may need to involve capacity control, such as licencing, gear restrictions and catch limits, together with controls on the fin trade.  相似文献   

12.
Mean trophic level (MTL) of landings and primary production required (PPR) by fisheries are increasingly used in the assessment of sustainability in fisheries. However, in their present form, MTL and PPR are prone to misinterpretation. We show that it is important to account for actual catch data, define an appropriate historical and spatial domain, and carefully consider the effects of fisheries management, based on results from a case study of Swedish fisheries during the past century.  相似文献   

13.
IndiSeas (“Indicators for the Seas”) is a collaborative international working group that was established in 2005 to evaluate the status of exploited marine ecosystems using a suite of indicators in a comparative framework. An initial shortlist of seven ecological indicators was selected to quantify the effects of fishing on the broader ecosystem using several criteria (i.e., ecological meaning, sensitivity to fishing, data availability, management objectives and public awareness). The suite comprised: (i) the inverse coefficient of variation of total biomass of surveyed species, (ii) mean fish length in the surveyed community, (iii) mean maximum life span of surveyed fish species, (iv) proportion of predatory fish in the surveyed community, (v) proportion of under and moderately exploited stocks, (vi) total biomass of surveyed species, and (vii) mean trophic level of the landed catch. In line with the Nagoya Strategic Plan of the Convention on Biological Diversity (2011–2020), we extended this suite to emphasize the broader biodiversity and conservation risks in exploited marine ecosystems. We selected a subset of indicators from a list of empirically based candidate biodiversity indicators initially established based on ecological significance to complement the original IndiSeas indicators. The additional selected indicators were: (viii) mean intrinsic vulnerability index of the fish landed catch, (ix) proportion of non-declining exploited species in the surveyed community, (x) catch-based marine trophic index, and (xi) mean trophic level of the surveyed community. Despite the lack of data in some ecosystems, we also selected (xii) mean trophic level of the modelled community, and (xiii) proportion of discards in the fishery as extra indicators. These additional indicators were examined, along with the initial set of IndiSeas ecological indicators, to evaluate whether adding new biodiversity indicators provided useful additional information to refine our understanding of the status evaluation of 29 exploited marine ecosystems. We used state and trend analyses, and we performed correlation, redundancy and multivariate tests. Existing developments in ecosystem-based fisheries management have largely focused on exploited species. Our study, using mostly fisheries independent survey-based indicators, highlights that biodiversity and conservation-based indicators are complementary to ecological indicators of fishing pressure. Thus, they should be used to provide additional information to evaluate the overall impact of fishing on exploited marine ecosystems.  相似文献   

14.
Management agencies have increasingly relied on size limits, daily bag or trip limits, quotas, and seasonal closures to manage fishing in recreational and commercial fisheries. Another trend is to establish aquatic protected areas, including no-take reserves (NTRs), to promote sustainable fisheries and protect aquatic ecosystems. Some anglers, assuming that no serious harm befalls the fish, advocate allowing catch-and-release (C&R) angling in aquatic protected areas. The ultimate success of these regulations and C&R angling depends on ensuring high release survival rates by minimizing injury and mortality. To evaluate the potential effectiveness of these practices, we review trends in C&R fishing and factors that influence release mortality. Analysis of Marine Recreational Fishery Statistic Survey (MRFSS) data for 1981–1999 showed no statistically significant U.S. trends for total number of anglers (mean 7.7 × 106), total catch in numbers (mean 362 × 106), or total annual catch/angler (mean 42.6 fish). However, mean total annual landings declined 28% (188.5 to 135.7 × 106), mean total catch/angler/trip declined 22.1% (0.95 to 0.74 fish), and mean landings/angler/trip declined 27% (0.42 to 0.31 fish). The total number of recreational releases or discards increased 97.1% (98.0 to 193.2 × 106) and as a proportion of total catch from 34.2% in 1981 to 58.0% in 1999. Evidence indicates that the increased releases and discards are primarily in response to mandatory regulations and to a lesser extent, voluntary releases. Total annual catch and mean annual catch/angler were maintained despite declines in catch per trip because anglers took 30.8% more fishing trips (43.5 to 56.9 × 106), perhaps to compensate for greater use of bag and size limits. We reviewed 53 release mortality studies, doubling the number of estimates since Muoneke and Childress (1994) reviewed catch and release fishing. A meta-analysis of combined data (n=274) showed a skewed distribution of release mortality (median 11%, mean 18%, range 0–95%). Mortality distributions were similar for salmonids, marine, and freshwater species. Mean mortality varied greatly by species and within species, anatomical hooking location was the most important mortality factor. Other significant mortality factors were: use of natural bait, removing hooks from deeply hooked fish, use of J-hooks (vs. circle hooks), deeper depth of capture, warm water temperatures, and extended playing and handling times. Barbed hooks had marginally higher mortality than barbless hooks. Based on numbers of estimates, no statistically significant overall effects were found for fish size, hook size, venting to deflate fish caught at depth, or use of treble vs. single hooks. Catch and release fishing is a growing and an increasingly important activity. The common occurrence of release mortality, however, requires careful evaluation for achieving fishery management goals and in some cases, disturbance, injury, or mortality may conflict with some goals of NTRs. Research is needed to develop better technology and techniques to reduce release mortality, to assess mortality from predation during capture and after release, to determine cumulative mortality from multiple hooking and release events, and to measure sub-lethal effects on behavior, physical condition, growth, and reproduction.  相似文献   

15.

Background

Ecologists, fisheries scientists, and coastal managers have all called for an ecosystem approach to fisheries management, yet many species such as the American lobster (Homarus americanus) are still largely managed individually. One hypothesis that has yet to be tested suggests that human augmentation of lobster diets via the use of Atlantic herring (Clupea harengus) as bait may contribute to recent increases in lobster landings. Currently 70% of Atlantic herring landings in the Gulf of Maine are used as bait to catch lobsters in traps throughout coastal New England.

Methodology/Principal Findings

We examined the effects of this herring bait on the diet composition and growth rate of lobsters at heavily baited vs. seasonally closed (i.e., bait free) sites in coastal Maine. Our results suggest that human use of herring bait may be subsidizing juvenile lobster diets, thereby enhancing lobster growth and the overall economic value and yield of one of the most valuable fisheries in the U.S.

Conclusions/Significance

Our study illustrates that shifting to an ecosystem approach to fisheries management should require consideration of cross-fishery interactions.  相似文献   

16.
Kuwait's fisheries include shrimp trawlers, gill nets, intertidal stake nets, and demersal fish traps, known locally as gargoor. The gargoor fishery used to be the nation's most important in terms of value and landings volume, but declines in catch rates have reduced its ranking. This paper describes the status of the gargoor artisanal fishery. The main landings place was sampled for catch and effort, and fish length‐frequency data from May 2003 to December 2005. The catch rate, monthly average number of boats operating, and the number of gargoor cleared were estimated for dhow boats fishing in Kuwait's waters and international waters, and speed boats operating in Kuwait waters only. Over the duration of the study period, the speedboat catch rates were higher than those of dhow boats, i.e., 3.7 kg/trap‐pull vs. 2.6 and 2.5 kg/trap‐pull for dhows fishing in Kuwait's territorial waters and international waters, respectively. The grouper, Epinephelus coicodes, was the main species captured, contributing 19.3% and 17.8% to the dhow catch in Kuwait waters and international waters, respectively. The catch rates by dhow boats declined from an average of 4.7 kg/trap‐pull in 2003 to 2.7 kg/trap‐pull in 2005 representing a 41% decrease. If this decreasing catch rate trend continues, then fishing effort should be reduced to allow stock recovery. It is recommended that the number of gargoor fished in Kuwaiti waters should be limited and that several no‐fishing zones be established to ensure the minimum spawning stock biomass and preserve biodiversity for all fisheries.  相似文献   

17.
Rapid climate changes are currently driving substantial reorganizations of marine ecosystems around the world. A key question is how these changes will alter the provision of ecosystem services from the ocean, particularly from fisheries. To answer this question, we need to understand not only the ecological dynamics of marine systems, but also human adaptation and feedbacks between humans and the rest of the natural world. In this review, we outline what we have learned from research primarily in continental shelf ecosystems and fishing communities of North America. Key findings are that marine animals are highly sensitive to warming and are responding quickly to changes in water temperature, and that such changes are often happening faster than similar processes on land. Changes in species distributions and productivity are having substantial impacts on fisheries, including through changing catch compositions and longer distances traveled for fishing trips. Conflicts over access to fisheries have also emerged as species distributions are no longer aligned with regulations or catch allocations. These changes in the coupled natural-human system have reduced the value of ecosystem services from some fisheries and risk doing so even more in the future. Going forward, substantial opportunities for more effective fisheries management and operations, marine conservation, and marine spatial planning are likely possible through greater consideration of climate information over time-scales from years to decades.  相似文献   

18.
Trophic indicators were used to compare two Malian freshwater reservoirs whose main differences are based on their different fishing pressures. Data were collected from a scientific survey of small-scale fishery landings conducted in 2002/2003. The trophic levels of fish species caught by artisanal fisheries are estimated from observations of scientific fishing or from the metabase Fishbase. Important differences exist in the trophic structure of both reservoirs. In Selingue (with high fishing pressure), very few top predators are found in the catches while the low trophic level fishes increase in total catches. In Manantali (with low fishing pressure), the top predators contribute twice as much to catches compared to Selingue. Hence, the mean trophic level of catches in Selingue (2.80) is lower than in Manantali (2.97). When comparing these results with those of study made in 1994/1995, it clearly appears that the effects of the fishing pressure in Selingue are obvious through a decrease of 0.12 in the mean trophic level while in Manantali this mean level has increased by 0.33 due to a recent strategic targeting of top predators. Trophic spectra seem to be relevant tools to characterize exploited fish communities from multi-specific and multi-gear small-scale fisheries catch data.  相似文献   

19.

Bycatch continues to be a challenge to sustainable fisheries management (The term “bycatch” in this paper covers discards and does not include retained incidental catch). Bycatch estimates can inform stock status determinations by improving understanding of fishing mortality, and help managers monitor the effectiveness of regulations. Assessments of the quality of bycatch estimation programs and procedures are necessary to evaluate the precision and limitations of their results over time. NOAA Fisheries experts used a “Tier Classification System” (TCS) to compare the quality of fish bycatch data and estimation methods for U.S. commercial fisheries in 2005 and 2015. The TCS included criteria related to data adequacy and analytical approaches. A comparison of U.S. fishery tier scores demonstrated that most fisheries were classified into higher tiers in 2015 compared to 2005 due to factors including improved sampling design. In addition, this comparison identified region-specific trends (e.g., mostly improvements occurred for Alaska fisheries with more mixed results for Greater Atlantic fisheries). The improvements in bycatch data quality and estimation methods in the United States are a result of financial investments in observer programs by NOAA Fisheries and industry partners, as well as effective conservation measures implemented by regional fishery management councils and NOAA Fisheries. The TCS was also used to assess bycatch data and estimation methods in all of Australia’s fishery jurisdictions for the decade 2010–19, illustrating the international applicability of the method. Overall, Australian state fisheries scored lower than federally managed fisheries in both the United States and Australia, reflecting the fact that the latter fisheries tend to be larger (and more valuable) than those in state jurisdictions, with a larger investment in observer programs. A comparison of tier scores and estimates of discards by fishery may provide a useful input for decision-making processes regarding allocation of resources to improve bycatch monitoring.

  相似文献   

20.
Discards represent one of the most important issues within current commercial fishing. It occurs for a range of reasons and is influenced by an even more complex array of factors. We address this issue by examining the data collected within the Danish discard observer program and describe the factors that influence discarding within the Danish Kattegat demersal fleet over the period 1997 to 2008. Generalised additive models were used to assess how discards of the 3 main target species, Norway lobster, cod and plaice, and their subcomponents (under and over minimum landings size) are influenced by important factors and their potential relevance to management. Our results show that discards are influenced by a range of different factors that are different for each species and portion of discards. We argue that knowledge about the factors influential to discarding and their use in relation to potential mitigation measures are essential for future fisheries management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号