共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. 相似文献
3.
Anita B. Hjelmeland Qiulian Wu Sarah Wickman Christine Eyler John Heddleston Qing Shi Justin D. Lathia Jennifer MacSwords Jeongwu Lee Roger E. McLendon Jeremy N. Rich 《PLoS biology》2010,8(2)
Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioblastoma stem cells (GSCs). GSCs are regulated by molecular pathways distinct from the bulk tumor that may be useful therapeutic targets. We determined that A20 (TNFAIP3), a regulator of cell survival and the NF-κB pathway, is overexpressed in GSCs relative to non-stem glioblastoma cells at both the mRNA and protein levels. To determine the functional significance of A20 in GSCs, we targeted A20 expression with lentiviral-mediated delivery of short hairpin RNA (shRNA). Inhibiting A20 expression decreased GSC growth and survival through mechanisms associated with decreased cell-cycle progression and decreased phosphorylation of p65/RelA. Elevated levels of A20 in GSCs contributed to apoptotic resistance: GSCs were less susceptible to TNFα-induced cell death than matched non-stem glioma cells, but A20 knockdown sensitized GSCs to TNFα-mediated apoptosis. The decreased survival of GSCs upon A20 knockdown contributed to the reduced ability of these cells to self-renew in primary and secondary neurosphere formation assays. The tumorigenic potential of GSCs was decreased with A20 targeting, resulting in increased survival of mice bearing human glioma xenografts. In silico analysis of a glioma patient genomic database indicates that A20 overexpression and amplification is inversely correlated with survival. Together these data indicate that A20 contributes to glioma maintenance through effects on the glioma stem cell subpopulation. Although inactivating mutations in A20 in lymphoma suggest A20 can act as a tumor suppressor, similar point mutations have not been identified through glioma genomic sequencing: in fact, our data suggest A20 may function as a tumor enhancer in glioma through promotion of GSC survival. A20 anticancer therapies should therefore be viewed with caution as effects will likely differ depending on the tumor type. 相似文献
4.
Philippe Kieffer-Kwon Christine Happel Thomas S. Uldrick Dhivya Ramalingam Joseph M. Ziegelbauer 《PloS one》2015,10(8)
Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis. 相似文献
5.
Parikshit Bagchi Dipanjan Dutta Shiladitya Chattopadhyay Anupam Mukherjee Umesh Chandra Halder Sagartirtha Sarkar Nobumichi Kobayashi Satoshi Komoto Koki Taniguchi Mamta Chawla-Sarkar 《Journal of virology》2010,84(13):6834-6845
Following virus infection, one of the cellular responses to limit the virus spread is induction of apoptosis. In the present study, we report role of rotavirus nonstructural protein 1 (NSP1) in regulating apoptosis by activating prosurvival pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt and NF-κB (nuclear factor κB) during early hours of infections (2 to 8 hpi). The NSP1 mutant strain A5-16 induces weak and transient activation of Akt (protein kinase B) and p65 NF-κB compared to the isogenic wild-type strain A5-13 in MA104 or HT29 cells. The weak NF-κB promoter activity or Akt phosphorylation after A5-16 infection could be complemented in cells transfected with plasmid expressing NSP1 after infection with the rotavirus A5-16 strain. In cells either infected with A5-13 or transfected with pcD-NSP1, coimmunoprecipitation of NSP1 with phosphoinositide 3-kinase (PI3K) was observed, indicating that strong activation of PI3K/Akt could be due to its interaction with NSP1. In addition, after infection with same multiplicity of infection, A5-16 showed reduced number of viral particles compared to the A5-13 strain at the end of the replication cycle. A lower growth rate could be due to weak induction of PI3K/Akt and NF-κB, since the A5-13 strain also showed reduced growth in the presence of PI3K or NF-κB inhibitors. This effect was interferon independent; however, it was partly due to significantly higher caspase-3 activity, poly-ADP ribose polymerase (PARP) cleavage, and apoptosis during earlier stages of infection with the NSP1 mutant. Thus, our data suggest that NSP1 positively supports rotavirus growth by suppression of premature apoptosis for improved virus growth after infection.Virus infection results in the activation of a variety of cellular signaling pathways that are required not only for mounting an antiviral response to infection but are also exploited by viruses to support their replication in host cells. All stages of viral infection including entry, the production of double-stranded RNA (dsRNA), and the expression of viral proteins can activate innate immune response (35). Viral infection stimulates the phosphorylation and subsequent dimerization of a ubiquitously expressed 55-kDa protein, IFN regulatory factor 3 (IRF3), which then translocates to the nucleus and induces type I interferons (IFNs; IFN-α and -β) as the first line of defense against infections (29, 35). The secreted IFNs signal the production and activation of antiviral proteins in neighboring cells to control the spread of infection. To counteract these antiviral responses, viruses have evolved mechanisms to suppress the IFN-mediated signaling pathways. VP35 of Ebola virus, NS1 and NS2 of respiratory syncytial virus (RSV), NS1 of influenza virus, the E6 protein of human papillomavirus, etc., suppress IFN induction by inhibiting either the activation of IRF3 (5, 23, 50, 52) or the IFN-induced JAK/STAT pathway (30). Other than the inhibition of innate immune responses, it is also important for a virus to keep the infected cell alive to complete its life cycle. Thus, viruses have also evolved mechanisms to modulate the host cellular apoptotic pathways. For example, NS1 and NS2 proteins of RSV suppress premature apoptosis of host cell by a nuclear factor κB (NF-κB)-dependent and IFN-independent mechanism (6), whereas poliovirus, influenza virus, and dengue virus have been shown to limit premature cell death by early activation of phosphoinositide 3-kinase (PI3K)/Akt pathway (2, 17, 39).Rotaviruses, members of the family Reoviridae, are the major cause of severe gastroenteritis in children younger than 5 years of age. Calves, piglets, and other animals of economic importance are also susceptible to rotavirus infection (21). Rotaviruses generally infect the enterocytes of the small intestine; however, there have recently been increasing reports of extraintestinal infections (7), highlighting the importance of better knowledge of the mechanisms of viral pathogenesis and virus-host cell interactions (11, 32).The virus is a icosahedral structure consisting of three concentric layers of proteins and a genome of 11 dsRNA segments (21). In addition to the six structural proteins (VP1 to VP4, VP6, and VP7) which form the virion, the virus also encodes six nonstructural proteins (NSP1 to NSP6). Nonstructural proteins (NSPs) are of great interest since these are translated only in host cells after virus infection and do not form part of the mature infectious virus. In general, the NSPs of viruses have been associated with diverse functions such as interactions of virus with host cell, RNA binding, evasion of immune response, inhibition of cellular translation, etc. (2, 6, 8, 17, 23, 30, 50, 52). There are limited reports regarding the role of rotavirus-encoded NSPs. Rotavirus NSP4 is a putative viral enterotoxin (18), NSP3 has been implicated in PABP binding and nuclear translocation of PABP binding protein (27), NSP3 has been also shown to interact with protein kinase R (PKR) (38), and NSP1 has been shown to inhibit the induction of IFN by inducing the degradation of IRF-3, -5, and -7 (3, 4, 45).Rotavirus NSP1, an RNA-binding protein (21), is the only rotavirus protein implicated in evasion of innate immune response by counteracting induction of IFN to influence virus replication (4, 22); however, whether NSP1 or other rotavirus-encoded proteins modulate any other host cellular signaling pathways is not well understood. Rotaviruses have been shown to activate PI3K-mediated integrin expression and NF-κB (25, 42), but no viral protein has been reported to directly associate with these pathways. Unlike other rotavirus proteins, NSP1 is highly variable among group A rotaviruses (31), except for a conserved N-terminus cysteine-rich motif (C-X2-C-X8-C-X2-C-X3-H-X-C-X2-C-X-5-C), which is a putative zinc finger motif. Since this region is conserved, it has been postulated that it may have an important role in function of the protein. The C terminus of NSP1 has an IRF3 binding site and has been shown to be involved in IRF3 degradation (3, 4). To study the role of NSP1 in modulation of apoptosis, we utilized an NSP1 wild-type (wt) bovine rotavirus strain A5-13 and an isogenic NSP1 mutant strain, A5-16. The NSP1 of A5-16 has a 500-nucleotide deletion (nucleotides 142 to 641) in the N terminus, including the cysteine-rich zinc finger motif (Fig. (Fig.11 A), followed by a nonsense codon resulting in lack of detectable functional protein (53). A5-16 is not replication defective, although it has been shown to have smaller plaque size compared to A5-13 (53). This is the first report showing that rotavirus NSP1 helps rotavirus to establish and replicate efficiently in host cells by inhibiting the cellular apoptosis through the activation of the prosurvival pathways PI3K/Akt and NF-κB during the initial stages of infection.Open in a separate windowFIG. 1.(A) Schematic diagram of full-length (1,579 bases; wt A5-13) and deletion mutant (1,087 bases; mutant A5-16) gene segments 5 encoding NSP1 (59 kDa) of rotavirus. In A5-13, nucleotide positions 105 to 246 and 246 to 531 correspond to the deduced RING domain and cytoskeleton localization domain sequence, respectively, whereas position 981 to the rest of the gene implies an IRF3 binding domain. The NSP1 gene of A5-16 has a 500-nucleotide deletion from nucleotides 142 to 641, followed by an immediate stop codon at positions 183 to 185, indicating the lack of a functional RING domain and cytoskeleton localization domain. (B) Immunoblot analyses showing the expression of structural protein VP6 and nonstructural proteins NSP1 and NSP3 of both wt A5-13 and mutant A5-16 strains (MOI of 3, 12 hpi). Both A5-13- and A5-16-infected cells expressed VP6 and NSP3 proteins, but NSP1 expression was observed only in A5-13-infected cells. The blots were reprobed with β-actin antibody to confirm equal protein loading. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(11):1433-1439
In the yeast Saccharomyces cerevisiae, mitotic cell cycle progression depends upon the G1-phase cyclin-dependent kinase Cln-Cdc28 and cell growth to a minimum cell size. In contrast,Cln-Cdc28 inhibits entry into meiosis, and a cell growth requirement for sporulation has not beenestablished. Here, we report that entry in meiosis is also dependent upon cell growth. Moreover,sporulation and cell growth rates were proportional to cell size; large cells grew rapidly andsporulated sooner while smaller cells grew slowly and sporulated later. In addition, Cln2 proteinlevels were higher in smaller cells suggesting that Cln-Cdc28 activity represses meiosis insmaller cells by preventing cell growth. In support of this hypothesis, loss of Clns, or thepresence of a cdc28 mutation increased cell growth in smaller cells and accelerated meiosis inthese cells. Finally, over-expression of CLNs repressed meiosis in smaller cells, but not in largecells. Taken together, these results demonstrate that Cln-Cdc28 represses entry into meiosis inpart by inhibiting cell growth. 相似文献
7.
Isabelle Marois Alexandre Cloutier Isabelle Meunier Hana M. Weingartl André M. Cantin Martin V. Richter 《PloS one》2014,9(10)
Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs) and calcium modulators (CMs), which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA) revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly. 相似文献
8.
miRNAs are emerging as critical regulators in carcinogenesis and tumor progression. Recently, microRNA-122 (miR-122) has been proved to play an important role in hepatocellular carcinoma, but its functions in the context of breast cancer (BC) remain unknown. In this study, we report that miR-122 is commonly downregulated in BC specimens and BC cell lines with important functional consequences. Overexpression of miR-122 not only dramatically suppressed cell proliferation, colony formation by inducing G1-phase cell-cycle arrest in vitro, but also reduced tumorigenicity in vivo. We then screened and identified a novel miR-122 target, insulin-like growth factor 1 receptor (IGF1R), and it was further confirmed by luciferase assay. Overexpression of miR-122 would specifically and markedly reduce its expression. Similar to the restoring miR-122 expression, IGF1R downregulation suppressed cell growth and cell-cycle progression, whereas IGF1R overexpression rescued the suppressive effect of miR-122. To identify the mechanisms, we investigated the Akt/mTOR/p70S6K pathway and found that the expression of Akt, mTOR and p70S6K were suppressed, whereas re-expression of IGF1R which did not contain the 3′UTR totally reversed the inhibition of Akt/mTOR/p70S6K signal pathway profile. We also identified a novel, putative miR-122 target gene, PI3CG, a member of PI3K family, which further suggests miR-122 may be a key regulator of the PI3K/Akt pathway. In clinical specimens, IGF1R was widely overexpressed and its mRNA levels were inversely correlated with miR-122 expression. Taken together, our results demonstrate that miR-122 functions as a tumor suppressor and plays an important role in inhibiting the tumorigenesis through targeting IGF1R and regulating PI3K/Akt/mTOR/p70S6K pathway. Given these, miR-122 may serve as a novel therapeutic or diagnostic/prognostic-target for treating BC. 相似文献
9.
Caroline Morel Scott M. Carlson Forest M. White Roger J. Davis 《Molecular and cellular biology》2009,29(14):3845-3852
Mcl-1 is a member of the Bcl2-related protein family that is a critical mediator of cell survival. Exposure of cells to stress causes inhibition of Mcl-1 mRNA translation and rapid destruction of Mcl-1 protein by proteasomal degradation mediated by a phosphodegron created by glycogen synthase kinase 3 (GSK3) phosphorylation of Mcl-1. Here we demonstrate that prior phosphorylation of Mcl-1 by the c-Jun N-terminal protein kinase (JNK) is essential for Mcl-1 phosphorylation by GSK3. Stress-induced Mcl-1 degradation therefore requires the coordinated activity of JNK and GSK3. Together, these data establish that Mcl-1 functions as a site of signal integration between the proapoptotic activity of JNK and the prosurvival activity of the AKT pathway that inhibits GSK3.Mcl-1 is an antiapoptotic member of the Bcl2 family. Gene knockout studies of mice demonstrate that Mcl-1 is essential for embryonic development and for the survival of hematopoietic cells (28-30). Studies of the stress response have demonstrated that Mcl-1 plays an important role in the sensitization of cells to apoptotic signals (1, 11, 25). Thus, exposure to UV radiation causes the rapid degradation of Mcl-1 and the release of proapoptotic partner proteins from Mcl-1 complexes (e.g., Bim). The mechanism of rapid Mcl-1 destruction is mediated by the combined actions of two different pathways. First, the exposure to stress causes phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2α) on the inhibitory site Ser-51 that prevents translation of Mcl-1 mRNA (1, 11, 25). Second, Mcl-1 is rapidly degraded by the ubiquitin-dependent proteasome pathway (27). Together, these pathways cause a rapid reduction in Mcl-1 expression. This loss of Mcl-1 may be a required initial response for the apoptosis of cells exposed to stress (25).The E3 ubiquitin protein ligase Mule/ARF-BP1 contains a BH3 domain that interacts with Mcl-1 and can initiate ubiquitin-dependent degradation of Mcl-1 (39). Recent studies have demonstrated that rapid stress-induced degradation of Mcl-1 is mediated by an alternative pathway involving the E3 ubiquitin protein ligase β-TrCP, which binds a stress-induced phosphodegron created by the phosphorylation of Mcl-1 by glycogen synthase kinase 3 (GSK3) (7, 21). How the exposure to stress causes GSK3-mediated phosphorylation of Mcl-1 is unclear, but GSK3 has been shown to directly phosphorylate Mcl-1 (7, 21). Mcl-1 phosphorylation and degradation may therefore be controlled by the prosurvival AKT pathway, which can negatively regulate GSK3 (7, 21).Mcl-1 is critically involved in the regulation of cell survival and is therefore subject to regulation by multiple mechanisms (26). Thus, Mcl-1 gene expression is regulated by many growth factors and cytokines (26), and Mcl-1 mRNA is regulated by microRNA pathways (24). The Mcl-1 protein is stabilized by binding TCTP (20) and the BH3-only protein Bim (4). In contrast, the BH3-only protein Noxa binds and destabilizes Mcl-1 (4, 36). Moreover, it is established that Mcl-1 is phosphorylated by several protein kinases on sites that may regulate Mcl-1 function. Phosphorylation of human Mcl-1 (hMcl-1) on Ser-64 (a site that is not conserved in other species) may enhance antiapoptotic activity by increasing the interaction of Mcl-1 with Bim, Noxa, and Bak (18). Phosphorylation on Ser-121 and Thr-163 may inhibit the antiapoptotic activity of hMcl-1 (15), and phosphorylation on Thr-163 may increase hMcl-1 protein stability (9). The conserved GSK3 phosphorylation site Ser-159 (and possibly Ser-155) can initiate rapid proteasomal degradation of hMcl-1 (7, 21). Together, these findings suggest that the function of Mcl-1 is very tightly regulated.The results of previous studies have implicated the c-Jun N-terminal protein kinase (JNK) in the regulation of Mcl-1 (15, 18). The purpose of this study was to test whether Mcl-1 is a target of signal transduction by JNK. We demonstrate that a key function of JNK is to prime Mcl-1 for phosphorylation by GSK3. JNK is required for GSK3-mediated degradation of Mcl-1 in response to stress. Coordinated regulation of the stress-activated JNK pathway and the AKT-inhibited GSK3 pathway is therefore required for stress-induced Mcl-1 degradation. 相似文献
10.
William Kong Lili He Marc Coppola Jianping Guo Nicole N. Esposito Domenico Coppola Jin Q. Cheng 《The Journal of biological chemistry》2010,285(23):17869-17879
Breast cancer is the second leading cause of cancer death in women. Despite improvement in treatment over the past few decades, there is an urgent need for development of targeted therapies. miR-155 (microRNA-155) is frequently up-regulated in breast cancer. In this study, we demonstrate the critical role of miR-155 in regulation of cell survival and chemosensitivity through down-regulation of FOXO3a in breast cancer. Ectopic expression of miR-155 induces cell survival and chemoresistance to multiple agents, whereas knockdown of miR-155 renders cells to apoptosis and enhances chemosensitivity. Further, we identified FOXO3a as a direct target of miR-155. Sustained overexpression of miR-155 resulted in repression of FOXO3a protein without changing mRNA levels, and knockdown of miR-155 increases FOXO3a. Introduction of FOXO3a cDNA lacking the 3′-untranslated region abrogates miR-155-induced cell survival and chemoresistance. Finally, inverse correlation between miR-155 and FOXO3a levels were observed in a panel of breast cancer cell lines and tumors. In conclusion, our study reveals a molecular link between miR-155 and FOXO3a and presents evidence that miR-155 is a critical therapeutic target in breast cancer. 相似文献
11.
12.
《遗传学报》2015,(11)
Esophageal squamous cell carcinoma(ESCC) is one of the most common and deadly cancers in the world. Currently, clinical therapy of ESCC remains limited and the five-year survival rate is poor. The function of miR-425 has been reported in multiple human cancers.However, the tumorigenic role and clinical significance of miR-425 in ESCC remains unclear. We found that enhanced expression of miR-425 in ESCC cell lines not only promoted cell proliferation and colony formation, but also increased cellular metastasis. Furthermore, we revealed the mechanism that miR-425 inhibited the expression of SMAD2 by targeting the second binding site in the 30-untranslated region(30-UTR) in ESCC. This mode of action influenced not only SMAD2 mRNA expression but also protein expression. In addition, we detected the expression of miR-425 in ESCC tissues and plasma. Moreover, we analyzed the relationship between miR-425 expression and SMAD2 m RNA expression. We found that miR-425 was overexpressed in ESCC tissues and the plasma relative to adjacent normal tissues and plasma of healthy individuals. Furthermore, there was a negative correlation between miR-425 expression and SMAD2. Taken together, our results show that miR-425 functions as an oncogene by targeting the 30-UTR of SMAD2 and indicate the potential utility of plasma miR-425 as a novel biomarker for ESCC diagnosis. 相似文献
13.
Jiugang Song Liucun Gao Guang Yang Shanhong Tang Huahong Xie Yongji Wang Jingbo Wang Yanping Zhang Jiang Jin Yawen Gou Zhiping Yang Zheng Chen Kaichun Wu Jie Liu Daiming Fan 《PloS one》2014,9(10)
A growing amount of evidence indicates that miRNAs are important regulators of multiple cellular processes and, when expressed aberrantly in different types of cancer such as hepatocellular carcinoma (HCC), play significant roles in tumorigenesis and progression. Aberrant expression of miR-199a-5p (also called miR-199a) was found to contribute to carcinogenesis in different types of cancer, including HCC. However, the precise molecular mechanism is not yet fully understood. The present study showed that miR-199a is frequently down-regulated in HCC tissues and cells. Importantly, lower expression of miR-199a was significantly correlated with the malignant potential and poor prognosis of HCC, and restoration of miR-199a in HCC cells led to inhibition of the cell proliferation and cell cycle in vitro and in vivo. Furthermore, Frizzled type 7 receptor (FZD7), the most important Wnt receptor involved in cancer development and progression, was identified as a functional target of miR-199a. In addition, these findings were further strengthened by results showing that expression of FZD7 was inversely correlated with miR-199a in both HCC tissues and cells and that over-expression of miR-199a could significantly down-regulate the expression of genes downstream of FZD7, including β-catenin, Jun, Cyclin D1 and Myc. In conclusion, these findings not only help us to better elucidate the molecular mechanisms of hepatocarcinogenesis from a fresh perspective but also provide a new theoretical basis to further investigate miR-199a as a potential biomarker and a promising approach for HCC treatment. 相似文献
14.
Pachiyappan Kamarajan Julius Bunek Yong Lin Gabriel Nunez Yvonne L. Kapila 《Molecular biology of the cell》2010,21(3):481-488
Cross-talk between apoptosis and survival signaling pathways is crucial for regulating tissue processes and mitigating disease. We report that anoikis—apoptosis triggered by loss of extracellular matrix contacts—activates a CD95/Fas-mediated signaling pathway regulated by receptor-interacting protein (RIP), a kinase that shuttles between CD95/Fas-mediated cell death and integrin/focal adhesion kinase (FAK)-mediated survival pathways. RIP''s death domain was critical for RIP and Fas association to mediate anoikis. Fas or RIP attenuation reduced this association and suppressed anoikis, whereas their overexpression had the reverse effect. Overexpressing FAK restored RIP and FAK association and inhibited anoikis. Thus, RIP shuttles between CD95/Fas death and FAK survival signaling to mediate anoikis. 相似文献
16.
Puntita Siengdee Nares Trakooljul Eduard Murani Manfred Schwerin Klaus Wimmers Siriluck Ponsuksili 《PloS one》2015,10(5)
In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. 相似文献
17.
Masahiro Tanji Toshimasa Ishizaki Saman Ebrahimi Yuko Tsuboguchi Taiko Sukezane Tsuyoshi Akagi Margaret C. Frame Nobuo Hashimoto Susumu Miyamoto Shuh Narumiya 《Molecular and cellular biology》2010,30(19):4604-4615
The small GTPase Rho regulates cell morphogenesis through remodeling of the actin cytoskeleton. While Rho is overexpressed in many clinical cancers, the role of Rho signaling in oncogenesis remains unknown. mDia1 is a Rho effector producing straight actin filaments. Here we transduced mouse embryonic fibroblasts from mDia1-deficient mice with temperature-sensitive v-Src and examined the involvement and mechanism of the Rho-mDia1 pathway in Src-induced oncogenesis. We showed that in v-Src-transduced mDia1-deficient cells, formation of actin filaments is suppressed, and v-Src in the perinuclear region does not move to focal adhesions upon a temperature shift. Consequently, membrane translocation of v-Src, v-Src-induced morphological transformation, and podosome formation are all suppressed in mDia1-deficient cells with impaired tyrosine phosphorylation. mDia1-deficient cells show reduced transformation in vitro as examined by focus formation and colony formation in soft agar and exhibit suppressed tumorigenesis and invasion when implanted in nude mice in vivo. Given overexpression of c-Src in various cancers, these findings suggest that Rho-mDia1 signaling facilitates malignant transformation and invasion by manipulating the actin cytoskeleton and targeting Src to the cell periphery.The small GTPase Rho functions as a molecular switch in cell morphogenesis through remodeling of the actin cytoskeleton (3, 14). Rho cycles between the inactive GDP-bound form and the active GTP-bound form. This process is controlled by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) specific to Rho; the former group catalyzes the exchange of GDP to GTP (50), and the latter accelerates the hydrolysis of bound GTP (24). When Rho is activated in fibroblasts, actin stress fibers are formed. Rho proteins are frequently overexpressed in human cancers, such as cancers of the colon and breast and lung and testicular germ cell tumors (34). A positive correlation between the expression level of RhoA and disease progression was also reported in breast cancer and testicular germ cell tumors. RhoC, on the other hand, has been repeatedly identified as a gene positively associated with metastasis (4, 21, 40). The clinical significance of Rho in cancer is further implicated by a discovery that a RhoA GAP named Dlc-1 (deleted liver cancer 1) functions as a tumor suppressor in humans (47). Thus, it was known for some time that heterozygous deletions on chromosome 8p22 are common in human tumors, such as cancers of the breast, prostate, lung (5, 22), and especially liver (15). Recent studies have revealed a strong association of deletion of DLC-1 in this region with clinical cancers, and complementary in vitro experiments showed that DLC-1 functions as a potent tumor suppressor, depletion of which causes RhoA hyperactivation and results in tumorigenesis in harmony with other oncogenes, such as Myc and Ras (47). Importantly, heterozygous deletions in chromosome 8p22 are found to be nearly as common as that of TP53 in clinical cancers, indicating the significant importance of DLC-1 and Rho signaling in clinical tumors (18). Consistent with these findings, there are several reports on the requirement of Rho activity in cell transformation in vitro. For example, coexpression of Raf and dominant active RhoA facilitates focus formation, and expression of dominant-negative RhoA suppresses oncogenic Ras-induced focus formation in NIH 3T3 cells (30). In addition, active forms of Rho GEFs, such as Dbl and Ect2, have potent transforming activities in cultured cells in vitro (31). Thus, there are ample in vitro and clinical data indicating the involvement of Rho signaling in oncogenesis.Cell transformation often leads to a change in cell morphology. This morphological change associates with a change in the organization of actin filaments. Nontransformed cells often have thick bundled actin fibers known as stress fibers. When transformed by some oncogenes, such as Ras and v-Src, the actin stress fibers disappear and the cells dramatically alter their shape to the round refractile cell body (49). Alternatively, actin dot structures called podosomes are often formed. This remodeling of the cytoskeleton is believed to contribute to several aspects of the transformed phenotype, including adhesion-independent cell growth and increased migration abilities. Such actin remodeling associated with oncogenesis appears at odds with the requirement of Rho signaling in oncogenesis, because Rho activation leads to formation of actin fibers. Thus, there is a paradox of why transformed cells require Rho signaling yet show dissolution of actin cytoskeleton (27).Among many Rho effectors, two effector molecules, named mDia (44) and ROCK (11), have important roles in actin cytoskeleton remodeling (27). mDia produces straight actin filaments by catalyzing actin nucleation and polymerization, and ROCK activates myosin to cross-link actin filaments for induction of actomyosin bundles and contractility. Further, mDia is potentially linked to Rac activation and membrane ruffle formation through c-Src-induced phosphorylation of focal adhesion proteins, and ROCK antagonizes this mDia action (42). Thus, actin remodeling inside the cell can be determined primarily by the balance between mDia and ROCK activities. Of the two, the involvement of ROCK in tumors has been widely examined by the use of its small molecule inhibitors, such as Y-27632 (26, 43), and the Rho-ROCK pathway has been strongly implicated in cancer migration and tumor metastasis and invasion. On the other hand, the role of ROCK in oncogenesis remains ambiguous. While its requirement in Ras-induced cell transformation was indicated by the use of Y-27632, examination in Ras-transformed cells revealed that the majority of ROCK is sequestered in an inactive pool by sustained extracellular signal regulated-kinase (ERK)-mitogen-activated protein (MAP) kinase activity under active Ras (33), which might be one of the mechanisms for dissolution of stress fibers found in Ras transformants. Thus, how Rho signaling contributes to oncogenesis remains an open question.Study of Rho effectors other than ROCK has been hampered by the absence of available inhibitors. Recently we generated mDia1 knockout mice (36). Here, we used mouse embryonic fibroblast (MEF) cells derived from these mice and analyzed the involvement of mDia1 and its mechanism of action in v-Src-induced cell transformation and tumorigenesis. v-Src is the oldest widely studied oncogene, yet it remains unknown where in the cell it exerts its oncogenic potential. It was previously reported that temperature-sensitive (ts) v-Src accumulates in the perinuclear region at the restrictive temperature and migrates to the periphery upon a temperature shift in a manner dependent on the actin cytoskeleton and Rho (6, 37). However, the underlying mechanism of this v-Src targeting has not been fully elucidated, and whether this targeting is required for v-Src-induced oncogenesis remains to be shown. Using mDia1-deficient MEF cells, we have addressed these questions. Here we have shown that actin filaments produced by mDia1 are a prerequisite for v-Src targeting, and this v-Src targeting is critical for its role in cell transformation and tumorigenesis. Our results further show that the Rho-mDia1 pathway functions as a link between oncogenesis and invasion. 相似文献
18.
Patricia C. Sanchez-Diaz Tzu-Hung Hsiao Judy C. Chang Dong Yue Mimi C. Tan Hung-I Harry Chen Gail E. Tomlinson Yufei Huang Yidong Chen Jaclyn Y. Hung 《PloS one》2013,8(4)
Background
microRNAs (miRNAs) have been implicated in the control of many biological processes and their deregulation has been associated with many cancers. In recent years, the cancer stem cell (CSC) concept has been applied to many cancers including pediatric. We hypothesized that a common signature of deregulated miRNAs in the CSCs fraction may explain the disrupted signaling pathways in CSCs.Methodology/Results
Using a high throughput qPCR approach we identified 26 CSC associated differentially expressed miRNAs (DEmiRs). Using BCmicrO algorithm 865 potential CSC associated DEmiR targets were obtained. These potential targets were subjected to KEGG, Biocarta and Gene Ontology pathway and biological processes analysis. Four annotated pathways were enriched: cell cycle, cell proliferation, p53 and TGF-beta/BMP. Knocking down hsa-miR-21-5p, hsa-miR-181c-5p and hsa-miR-135b-5p using antisense oligonucleotides and small interfering RNA in cell lines led to the depletion of the CSC fraction and impairment of sphere formation (CSC surrogate assays).Conclusion
Our findings indicated that CSC associated DEmiRs and the putative pathways they regulate may have potential therapeutic applications in pediatric cancers. 相似文献19.
20.
Katrin H?land Danielle Boller Christian Hagel Silvia Dolski András Treszl Olivier E. Pardo Paulina ?wiek Fabiana Salm Zaira Leni Peter R. Shepherd Beata Styp-Rekowska Valentin Djonov André O. von Bueren Karl Frei Alexandre Arcaro 《PloS one》2014,9(4)
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6. 相似文献