共查询到20条相似文献,搜索用时 0 毫秒
1.
Rehan M. Baqri Brittany A. Turner Mary B. Rheuben Bradley D. Hammond Laurie S. Kaguni Kyle E. Miller 《PloS one》2009,4(11)
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson''s disease, Alper''s syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases. 相似文献
2.
3.
Vera M. Ruda Rohit Chandwani Alfica Sehgal Roman L. Bogorad Akin Akinc Klaus Charisse Alexander Tarakhovsky Tatiana I. Novobrantseva Victor Koteliansky 《PloS one》2014,9(7)
Argonaute 2 (Ago2) is the only mammalian Ago protein capable of mRNA cleavage. It has been reported that the activity of the short interfering RNA targeting coding sequence (CDS), but not 3′ untranslated region (3′UTR) of an mRNA, is solely dependent on Ago2 in vitro. These studies utilized extremely high doses of siRNAs and overexpressed Ago proteins, as well as were directed at various highly expressed reporter transgenes. Here we report the effect of Ago2 in vivo on targeted knockdown of several endogenous genes by siRNAs, targeting both CDS and 3′UTR. We show that siRNAs targeting CDS lose their activity in the absence of Ago2, whereas both Ago1 and Ago3 proteins contribute to residual 3′UTR-targeted siRNA-mediated knockdown observed in the absence of Ago2 in mouse liver. Our results provide mechanistic insight into two components mediating RNAi under physiological conditions: mRNA cleavage dependent and independent. In addition our results contribute a novel consideration for designing most efficacious siRNA molecules with the preference given to 3′UTR targeting as to harness the activity of several Ago proteins. 相似文献
4.
Aja M. Rieger Jeffrey D. Konowalchuk Leon Grayfer Barbara A. Katzenback Jeffrey J. Havixbeck Moira D. Kiemele Miodrag Belosevic Daniel R. Barreda 《PloS one》2012,7(10)
Phagocytosis is a cellular mechanism that is important to the early induction of antimicrobial responses and the regulation of adaptive immunity. At an inflammatory site, phagocytes serve as central regulators for both pro-inflammatory and homeostatic anti-inflammatory processes. However, it remains unclear if this is a recent evolutionary development or whether the capacity to balance between these two seemingly contradictory processes is a feature already displayed in lower vertebrates. In this study, we used murine (C57BL/6) and teleost fish (C. auratus) in vitro and in vivo models to assess the evolutionary conservation of this dichotomy at a site of inflammation. At the level of the macrophage, we found that teleost fish already displayed divergent pro-inflammatory and homeostatic responses following internalization of zymosan or apoptotic bodies, respectively, and that these were consistent with those of mice. However, fish and mice displayed significant differences in vivo with regards to the level of responsiveness to zymosan and apoptotic bodies, the identity of infiltrating leukocytes, their rate of infiltration, and the kinetics and strength of resulting antimicrobial responses. Unlike macrophages, significant differences were identified between teleost and murine neutrophilic responses. We report for the first time that activated murine, but not teleost neutrophils, possess the capacity to internalize apoptotic bodies. This internalization translates into reduction of neutrophil ROS production. This may play an important part in the recently identified anti-inflammatory activity that mammalian neutrophils display during the resolution phase of inflammation. Our observations are consistent with continued honing of inflammatory control mechanisms from fish to mammals, and provide added insights into the evolutionary path that has resulted in the integrated, multilayered responses that are characteristic of higher vertebrates. 相似文献
5.
6.
Namiko Abe Steven H. Borson Michael J. Gambello Fan Wang Valeria Cavalli 《The Journal of biological chemistry》2010,285(36):28034-28043
Unlike neurons in the central nervous system (CNS), injured neurons in the peripheral nervous system (PNS) can regenerate their axons and reinnervate their targets. However, functional recovery in the PNS often remains suboptimal, especially in cases of severe damage. The lack of regenerative ability of CNS neurons has been linked to down-regulation of the mTOR (mammalian target of rapamycin) pathway. We report here that PNS dorsal root ganglial neurons (DRGs) activate mTOR following damage and that this activity enhances axonal growth capacity. Furthermore, genetic up-regulation of mTOR activity by deletion of tuberous sclerosis complex 2 (TSC2) in DRGs is sufficient to enhance axonal growth capacity in vitro and in vivo. We further show that mTOR activity is linked to the expression of GAP-43, a crucial component of axonal outgrowth. However, although TSC2 deletion in DRGs facilitates axonal regrowth, it leads to defects in target innervation. Thus, whereas manipulation of mTOR activity could provide new strategies to stimulate nerve regeneration in the PNS, fine control of mTOR activity is required for proper target innervation. 相似文献
7.
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. 相似文献
8.
Daisuke Takeda Takumi Hasegawa Takeshi Ueha Yusuke Imai Akiko Sakakibara Masaya Minoda Teruya Kawamoto Tsutomu Minamikawa Yasuyuki Shibuya Toshihiro Akisue Yoshitada Sakai Masahiro Kurosaka Takahide Komori 《PloS one》2014,9(7)
Squamous cell carcinoma (SCC) is the main histological type of oral cancer. Its growth rate and incidence of metastasis to regional lymph nodes is influenced by various factors, including hypoxic conditions. We have previously reported that transcutaneous CO2 induces mitochondrial apoptosis and decreases lung metastasis by reoxygenating sarcoma cells. However, previous studies have not determined the sequential mechanism by which transcutaneous CO2 suppresses growth of epithelial tumors, including SCCs. Moreover, there is no report that transcutaneous CO2 suppresses lymphogenous metastasis using human cell lines xenografts. In this study, we examined the effects of transcutaneous CO2 on cancer apoptosis and lymphogenous metastasis using human SCC xenografts. Our results showed that transcutaneous CO2 affects expressions of PGC-1α and TFAM and protein levels of cleavage products of caspase-3, caspase-9 and PARP, which relatives mitochondrial apoptosis. They also showed that transcutaneous CO2 significantly inhibits SCC tumor growth and affects expressions of HIF-1α, VEGF, MMP-2 and MMP-9, which play essential roles in tumor angiogenesis, invasion and metastasis. In conclusion, transcutaneous CO2 suppressed tumor growth, increased mitochondrial apoptosis and decreased the number of lymph node metastasis in human SCC by decreasing intra-tumoral hypoxia and suppressing metastatic potential with no observable effect in vivo. Our findings indicate that transcutaneous CO2 could be a novel therapeutic tool for treating human SCC. 相似文献
9.
Andreas Gewies Mercedes Castineiras-Vilarino Uta Ferch Nina J?hrling Katja Heinrich Ulrike Hoeckendorf Gerhard K. H. Przemeck Matthias Munding Olaf Gro? Timm Schroeder Marion Horsch E. Loraine Karran Aneela Majid Stefan Antonowicz Johannes Beckers Martin Hrabé de Angelis Hans-Ulrich Dodt Christian Peschel Irmgard F?rster Martin J. S. Dyer Jürgen Ruland 《PloS one》2013,8(11)
Members of the PRDM protein family have been shown to play important roles during embryonic development. Previous in vitro and in situ analyses indicated a function of Prdm6 in cells of the vascular system. To reveal physiological functions of Prdm6, we generated conditional Prdm6-deficient mice. Complete deletion of Prdm6 results in embryonic lethality due to cardiovascular defects associated with aberrations in vascular patterning. However, smooth muscle cells could be regularly differentiated from Prdm6-deficient embryonic stem cells and vascular smooth muscle cells were present and proliferated normally in Prdm6-deficient embryos. Conditional deletion of Prdm6 in the smooth muscle cell lineage using a SM22-Cre driver line resulted in perinatal lethality due to hemorrhage in the lungs. We thus identified Prdm6 as a factor that is essential for the physiological control of cardiovascular development. 相似文献
10.
Daniela Pontes Silvia Innocentin Silvina del Carmen Juliana Franco Almeida Jean-Guy LeBlanc Alejandra de Moreno de LeBlanc Sébastien Blugeon Claire Cherbuy Fran?ois Lefèvre Vasco Azevedo Anderson Miyoshi Philippe Langella Jean-Marc Chatel 《PloS one》2012,7(9)
Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL) expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+) showed higher internalization rates in vitro in Caco-2 cells than the native (wt) lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP) expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG), one of the major cow''s milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG) was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i) in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii) plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not); iii) the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo. 相似文献
11.
Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy. 相似文献
12.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms. 相似文献
13.
Beatrice Cousin Emmanuel Ravet Sandrine Poglio Fabienne De Toni Mélanie Bertuzzi Hubert Lulka Ismahane Touil Mireille André Jean-Louis Grolleau Jean-Marie Péron Jean-Pierre Chavoin Philippe Bourin Luc Pénicaud Louis Casteilla Louis Buscail Pierre Cordelier 《PloS one》2009,4(7)
Background
Normal tissue homeostasis is maintained by dynamic interactions between epithelial cells and their microenvironment. Disrupting this homeostasis can induce aberrant cell proliferation, adhesion, function and migration that might promote malignant behavior. Indeed, aberrant stromal-epithelial interactions contribute to pancreatic ductal adenocarcinoma (PDAC) spread and metastasis, and this raises the possibility that novel stroma-targeted therapies represent additional approaches for combating this malignant disease. The aim of the present study was to determine the effect of human stromal cells derived from adipose tissue (ADSC) on pancreatic tumor cell proliferation.Principal Findings
Co-culturing pancreatic tumor cells with ADSC and ADSC-conditioned medium sampled from different donors inhibited cancer cell viability and proliferation. ADSC-mediated inhibitory effect was further extended to other epithelial cancer-derived cell lines (liver, colon, prostate). ADSC conditioned medium induced cancer cell necrosis following G1-phase arrest, without evidence of apoptosis. In vivo, a single intra-tumoral injection of ADSC in a model of pancreatic adenocarcinoma induced a strong and long-lasting inhibition of tumor growth.Conclusion
These data indicate that ADSC strongly inhibit PDAC proliferation, both in vitro and in vivo and induce tumor cell death by altering cell cycle progression. Therefore, ADSC may constitute a potential cell-based therapeutic alternative for the treatment of PDAC for which no effective cure is available. 相似文献14.
15.
Peter V. Hauser Jeffrey W. Pippin Cora Kaiser Ronald D. Krofft Paul T. Brinkkoetter Kelly L. Hudkins Dontscho Kerjaschki Jochen Reiser Charles E. Alpers Stuart J. Shankland 《PloS one》2010,5(3)
Podocytes are injured in several glomerular diseases. To alter gene expression specifically in podocytes in vivo, we took advantage of their active endocytotic machinery and developed a method for the targeted delivery of small interfering ribonucleic acids (siRNA). We generated an anti-mouse podocyte antibody that binds to rat and mouse podocytes in vivo. The polyclonal IgG antibody was cleaved into monovalent fragments, while preserving the antigen recognition sites. One Neutravidin molecule was linked to each monovalent IgG via the available sulfohydryl group. Protamine, a polycationic nuclear protein and universal adaptor for anionic siRNA, was linked to the neutravidin via biotin. The delivery system was named shamporter (sheep anti mouse podocyte transporter). Injection of shamporter coupled with either nephrin siRNA or TRPC6 siRNA via tail vein into normal rats substantially reduced the protein levels of nephrin or TRPC6 respectively, measured by western blot analysis and immunostaining. The effect was target specific because other podocyte-specific genes remained unchanged. Shamporter + nephrin siRNA induced transient proteinuria in rats. Control rats injected with shamporter coupled to control-siRNA showed no changes. These results show for the first time that siRNA can be delivered efficiently and specifically to podocytes in vivo using an antibody-delivery system. 相似文献
16.
Ricardo A. Gomes Catarina Franco Gon?alo Da Costa Sébastien Planchon Jenny Renaut Raquel M. Ribeiro Francisco Pinto Marta Sousa Silva Ana Varela Coelho Ana Ponces Freire Carlos Cordeiro 《PloS one》2012,7(11)
Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR) as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic) and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE). We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase) were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO) expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival. 相似文献
17.
Ole S. S?gaard Mette E. Graversen Steffen Leth Rikke Olesen Christel R. Brinkmann Sara K. Nissen Anne Sofie Kjaer Mariane H. Schleimann Paul W. Denton William J. Hey-Cunningham Kersten K. Koelsch Giuseppe Pantaleo Kim Krogsgaard Maja Sommerfelt Remi Fromentin Nicolas Chomont Thomas A. Rasmussen Lars ?stergaard Martin Tolstrup 《PLoS pathogens》2015,11(9)
18.
Ziv M. Machnes Tony C. T. Huang Philip K. Y. Chang Raminder Gill Nicholas Reist Gabriella Dezsi Ezgi Ozturk Francois Charron Terence J. O’Brien Nigel C. Jones R. Anne McKinney Moshe Szyf 《PloS one》2013,8(10)
Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5’ regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5’ region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5’ region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5’ region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5’ region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics. 相似文献
19.
20.
Samarjit Das Djahida Bedja Nathaniel Campbell Brittany Dunkerly Venugopal Chenna Anirban Maitra Charles Steenbergen 《PloS one》2014,9(5)
MicroRNAs (miRNAs) are small non-coding RNAs, which inhibit the stability and/or translation of a mRNA. miRNAs have been found to play a powerful role in various cardiovascular diseases. Recently, we have demonstrated that a microRNA (miR-181c) can be encoded in the nucleus, processed to the mature form in the cytosol, translocated into the mitochondria, and ultimately can regulate mitochondrial gene expression. However the in vivo impact of miR-181c is unknown. Here we report an in-vivo method for administration of miR-181c in rats, which leads to reduced exercise capacity and signs of heart failure, by targeting the 3′-end of mt-COX1 (cytochrome c oxidase subunit 1). We cloned miR-181c and packaged it in lipid-based nanoparticles for systemic delivery. The plasmid DNA complexed nanovector shows no apparent toxicity. We find that the mRNA levels of mitochondrial complex IV genes in the heart, but not any other mitochondrial genes, are significantly altered with miR-181c overexpression, suggesting selective mitochondrial complex IV remodeling due to miR-181c targeting mt-COX1. Isolated heart mitochondrial studies showed significantly altered O2-consumption, ROS production, matrix calcium, and mitochondrial membrane potential in miR-181c-treated animals. For the first time, this study shows that miRNA delivered to the heart in-vivo can lead to cardiac dysfunction by regulating mitochondrial genes. 相似文献