首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PGE(2) is a well-known immunomodulator produced in the immune response by APCs, such as dendritic cells (DCs), the most potent APC of the immune system. We investigated the PGE(2) biosynthetic capacity of bone marrow-derived DC (BM-DC) and the effects of PG on the APC. We observed that BM-DC produce PGE(2) and other proinflammatory mediators, such as leukotriene B(4) and NO, after LPS exposure. Constitutively present in BM-DC, cyclooxygenase (COX)-1 did not contribute significantly to the total pool of PGE(2) compared with the LPS-induced COX-2-produced PGE(2). Treatment of BM-DC with exogenous PGE(2) induced the production of large amounts of IL-10 and less IL-12p70. In addition, selective inhibition of COX-2, but not COX-1, was followed by significant decrements in PGE(2) and IL-10, a concomitant restoration of IL-12 production, and an enhancement of DC stimulatory potential. In contrast, we found no demonstrable role for leukotriene B(4) or NO. In view of the potential of PGE(2) to stimulate IL-10, we examined the possibility that the suppressive effect of PGE(2) is mediated via IL-10. We found that exogenous IL-10 inhibits IL-12p70 production in the presence of NS-398, a COX-2 selective inhibitor, while the inhibitory effects of PGE(2) were totally reversed by anti-IL-10. We conclude that COX-2-mediated PGE(2) up-regulates IL-10, which down-regulates IL-12 production and the APC function of BM-DC.  相似文献   

2.
Functional T-cell responses are initiated by physical interactions between T-cells and antigen-presenting cells (APCs), including dendritic cells (DCs) and B-cells. T-cells are activated more effectively by DCs than by B-cells, but little is known about the key molecular mechanisms that underpin the particular potency of DC in triggering T-cell responses. To better understand the influence of physical intercellular interactions on APC efficacy in activating T-cells, we used single cell force spectroscopy to characterize and compare the mechanical forces of interactions between DC:T-cells and B:T-cells. Following antigen stimulation, intercellular interactions of DC:T-cell conjugates were stronger than B:T-cell interactions. DCs induced higher levels of T-cell calcium mobilization and production of IL-2 and IFNγ than were elicited by B-cells, thus suggesting that tight intercellular contacts are important in providing mechanically stable environment to initiate T-cell activation. Blocking antibodies targeting surface co-stimulatory molecules CD80 or CD86 weakened intercellular interactions and dampen T-cell activation, highlighting the amplificatory roles of CD80/86 in regulating APC:T-cell interactions and T-cell functional activation. The variable strength of mechanical forces between DC:T-cells and B:T-cell interactions were not solely dependent on differential APC expression of CD80/86, since DCs were superior to B-cells in promoting strong interactions with T-cells even when CD80 and CD86 were inhibited. These data provide mechanical insights into the effects of co-stimulatory molecules in regulating APC:T-cell interactions.  相似文献   

3.
IntroductionPre-naïve B cells represent an intermediate stage in human B-cell development with some functions of mature cells, but their involvement in immune responses is unknown. The aim of this study was to determine the functional role of normal pre-naïve B cells during immune responses and possible abnormalities in systemic lupus erythematosus (SLE) that might contribute to disease pathogenesis.MethodsPre-naïve, naïve, and memory B cells from healthy individuals and SLE patients were stimulated through CD40 and were analyzed for interleukin-10 (IL-10) production and co-stimulatory molecule expression and their regulation of T-cell activation. Autoreactivity of antibodies produced by pre-naïve B cells was tested by measuring immunoglobulin M (IgM) autoantibodies in culture supernatants after differentiation.ResultsCD40-stimulated pre-naïve B cells produce larger amounts of IL-10 but did not suppress CD4+ T-cell cytokine production. Activated pre-naïve B cells demonstrated IL-10-mediated ineffective promotion of CD4+ T-cell proliferation and induction of CD4+FoxP3+ T cells and IL-10 independent impairment of co-stimulatory molecule expression and tumor necrosis factor-alpha (TNF-α) and IL-6 production. IgM antibodies produced by differentiated pre-naïve B cells were reactive to single-stranded deoxyribonucleic acid. SLE pre-naïve B cells were defective in producing IL-10, and co-stimulatory molecule expression was enhanced, resulting in promotion of robust CD4+ T-cell proliferation.ConclusionsThere is an inherent and IL-10-mediated mechanism that limits the capacity of normal pre-naïve B cells from participating in cellular immune response, but these cells can differentiate into autoantibody-secreting plasma cells. In SLE, defects in IL-10 secretion permit pre-naïve B cells to promote CD4+ T-cell activation and may thereby enhance the development of autoimmunity.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0687-1) contains supplementary material, which is available to authorized users.  相似文献   

4.
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.  相似文献   

5.
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c+CD14 and CD14+ DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4+ or CD8+T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c+CD14DDCs were able to differentiate naïve CD4+T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4+T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4+ T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.  相似文献   

6.
Dendritic cells (DCs) play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs) were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay), upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+CD8α- DCs, CD4-CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.  相似文献   

7.
To evaluate the early stages of the host response to chancroid bacterium Haemophilus ducreyi, we investigated the in vitro responses of monocyte-derived dendritic cells (DCs) and macrophages (MQs) to this pathogen and Haemophilus influenzae. The phagocytic activities and pro-inflammatory cytokine secretion profiles of the antigen-presenting cells (APCs) were analyzed after exposure to gentamycin-killed bacteria, H. ducreyi lipooligosaccharide (LOS), and purified cytolethal distending toxin (HdCDT). T-cell proliferation and cytokine release were examined after co-culturing isolated autologous CD4+ T cells with antigen-pulsed APCs. Both the DCs and MQs phagocytosed H. ducreyi and H. influenzae, as estimated by flow cytometry. All of the strains induced APC secretion of TNF-alpha, IL-6, IL-8, and IL-12, as measured by ELISA. Other human cells, particularly endothelial cells and fibroblasts, also produced cytokines when stimulated with these bacteria. Purified LOS at concentration 1 microg/ml induced two to threefold lower levels of cytokines than the whole bacteria, which indicates that other components are involved in immune activation. HdCDT inhibited partially the production of the aforementioned cytokines. High levels of IFN-gamma, but not of IL-4 and IL-13, were secreted by T cells after activation by either DCs or MQs that were pre-exposed to bacteria, indicating the Th1 nature of the immune response. The levels of T-cell proliferation induced by H. ducreyi were lower than those induced by H. influenzae. HdCDT-treated APCs did not display cytokine responses or T-cell proliferation. These results indicate that HdCDT intoxication, which results in progressive apoptosis of APCs, may hamper early stage immune responses.  相似文献   

8.
Simian hemorrhagic fever virus (SHFV) causes a fatal hemorrhagic fever in macaques but an asymptomatic, persistent infection in baboons. To investigate factors contributing to this differential infection outcome, the targets of SHFV infection, macrophages (MΦs) and myeloid dendritic cells (mDCs), were differentiated from macaque and baboon peripheral blood monocytes and used to compare viral replication and cell responses. SHFV replicated in >90% of macaque MΦs but in only ∼10% of baboon MΦs. Although SHFV infected ∼50% of macaque and baboon mDCs, virus replication was efficient in macaque but not in baboon mDCs. Both types of macaque cultures produced higher virus yields than baboon cultures. A more efficient type I interferon response and the production of proinflammatory cytokines, including interleukin-1β (IL-1β), IL-6, IL-12/23(p40), tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein 1α (MIP-1α), in response to SHFV infection were observed in macaque but not baboon cultures, suggesting less efficient counteraction of these responses by viral proteins in macaque cells. Baboon cultures produced higher levels of IL-10 than macaque cultures both prior to and after SHFV infection. In baboon but not macaque cell cultures, SHFV infection upregulated IL-10R1, a subunit of the IL-10 receptor (IL-10R), and also SOCS3, a negative regulator of proinflammatory cytokine production. Incubation of macaque cultures with human IL-10 before and/or after SHFV infection decreased production of IL-6, IL-1β, and MIP-1α but not TNF-α, suggesting a role for IL-10 in suppressing SHFV-induced proinflammatory cytokine production in macaques.  相似文献   

9.
Multiple modes of suppressive mechanisms including IL-10 are thought to be implicated in CD4+CD25+ regulatory T (Treg) cell-mediated suppression. However, the cellular source, role, and molecular mechanism of IL-10 in Treg cell biology remain controversial. We now studied the interaction between Treg cells and APCs. We demonstrate that Treg cells, but not conventional T cells, trigger high levels of IL-10 production by APCs, stimulate APC B7-H4 expression, and render APCs immunosuppressive. Initial blockade of B7-H4 reduces the suppressive activity mediated by Treg cell-conditioned APCs. Further, APC-derived, rather than Treg cell-derived, IL-10 is responsible for APC B7-H4 induction. Therefore, Treg cells convey suppressive activity to APCs by stimulating B7-H4 expression through IL-10. Altogether, our data provide a novel cellular and molecular mechanism for Treg cell-mediated immunosuppression at the level of APCs, and suggest a plausible mechanism for the suppressive effect of IL-10 in Treg cell-mediated suppression.  相似文献   

10.
Dendritic cells (DCs) are the professional APCs of the immune system, enabling T cells to perceive and respond appropriately to potentially dangerous microbes, while also being able to maintain T cell tolerance toward self. In part, such tolerance can be determined by IL-10 released from certain types of regulatory T cells. IL-10 has previously been shown to render DCs unable to activate T cells and it has been assumed that this process represents a general block in maturation. Using serial analysis of gene expression, we show that IL-10 pretreatment of murine bone marrow-derived DCs alone causes significant changes in gene expression. Furthermore, these cells retain the ability to respond to Toll-like receptor agonists, but in a manner skewed toward the selective induction of mediators known to enhance local inflammation and innate immunity, among which we highlight a novel CXCR2 ligand, DC inflammatory protein-1. These data suggest that, while the presence of a protolerogenic and purportedly anti-inflammatory agent such as IL-10 precludes DCs from acquiring their potential as initiators of adaptive immunity, their ability to act as initiators of innate immunity in response to Toll-like receptor signaling is enhanced.  相似文献   

11.
12.
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α(+) dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8(+) T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+) DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+) DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+) DCs primarily secrete low levels of TNFα while CD8α(+) DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+) DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.  相似文献   

13.
14.

Instruction

Interleukin 27 (IL-27) is an important regulator of the proinflammatory T-cell response. In this study, we investigated its role in the pathogenesis of Behçet’s disease (BD).

Methods

IL-27 mRNA in peripheral blood mononuclear cells (PBMCs) was examined by performing RT-PCRs. Cytokine levels in sera or supernatants of PBMCs, naïve CD4+ T cells, dendritic cells (DCs) and DC/T cells were determined by enzyme-linked immunosorbent assay. We used RNA interference in naïve CD4+ T cells to study the role of interferon regulatory factor 8 (IRF8) in the inhibitory effect of IL-27 on Th17 cell differentiation. Flow cytometry was used to evaluate the frequency of IL-17- and interferon γ–producing T cells.

Results

The expression of IL-27p28 mRNA by PBMCs and IL-27 in the sera and supernatants of cultured PBMCs were markedly decreased in patients with active BD. A higher frequency of IL-17-producing CD4+ T (Th17) cells and increased IL-17 production under Th17 polarizing conditions were observed in patients with active BD. IL-27 significantly inhibited Th17 cell differentiation. Downregulation of IRF8 by RNA interference abrogated the suppressive effect of IL-27 on Th17 differentiation. IL-27 inhibited the production of IL-1β, IL-6 and IL-23, but promoted IL-10 production, by DCs. IL-27-treated DCs inhibited both the Th1 and Th17 cell responses.

Conclusions

The results of the present study suggest that a decreased IL-27 expression is associated with disease activity in BD patients. Low IL-27 expression may result in a higher Th1 and Th17 cell response and thereby promote the autoinflammatory reaction observed in BD. Manipulation of IL-27 may offer a new treatment modality for this disease.  相似文献   

15.

Background

Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of human monocytes. The aim of this study was to investigate the effect of maggot secretions on the differentiation of monocytes into pro-inflammatory (MØ-1) and anti-inflammatory/pro-angiogenic macrophages (MØ-2) as these cells play a central role in wound healing.

Methodology/Principal Findings

Freshly isolated monocytes were incubated with secretions and GM-CSF or M-CSF for 6 days and then stimulated with LPS or LTA for 18 h. The expression of cell surface molecules and the levels of cytokines, chemokines and growth factors in supernatants were measured. Our results showed secretions to affect monocyte-macrophage differentiation leading to MØ-1 with a partial MØ-2-like morphology but lacking CD163, which is characteristic for MØ-2. In response to LPS or LTA, secretions-differentiated MØ-1 produced less pro-inflammatory cytokines (TNF-α, IL-12p40 and MIF) than control cells. Similar results were observed for MØ-2 when stimulated with low concentrations of LPS. Furthermore, secretions dose-dependently led to MØ-1 and MØ-2 characterized by an altered chemokine production. Secretions led to MØ-2, but not MØ-1, producing enhanced levels of the growth factors bFGF and VEGF, as compared to control cells. The expression of cell-surface receptors involved in LPS/LTA was enhanced by secretions, that of CD86 and HLA-DR down-regulated, while receptors involved in phagocytosis remained largely unaffected.

Conclusions

Maggot secretions skew the differentiation of monocytes into macrophages away from a pro-inflammatory to a pro-angiogenic type.  相似文献   

16.
T lymphocytes are key modulators of the immune response. Their activation requires cell-cell interaction with different myeloid cell populations of the immune system called antigen-presenting cells (APCs). Although T lymphocytes have recently been shown to respond to mechanical cues, in particular to the stiffness of their environment, little is known about the rigidity of APCs. In this study, single-cell microplate assays were performed to measure the viscoelastic moduli of different human myeloid primary APCs, i.e., monocytes (Ms, storage modulus of 520 +90/−80 Pa), dendritic cells (DCs, 440 +110/−90 Pa), and macrophages (MPHs, 900 +110/−100 Pa). Inflammatory conditions modulated these properties, with storage moduli ranging from 190 Pa to 1450 Pa. The effect of inflammation on the mechanical properties was independent of the induction of expression of commonly used APC maturation markers, making myeloid APC rigidity an additional feature of inflammation. In addition, the rigidity of human T lymphocytes was lower than that of all myeloid cells tested and among the lowest reported (Young’s modulus of 85 ± 5 Pa). Finally, the viscoelastic properties of myeloid cells were dependent on both their filamentous actin content and myosin IIA activity, although the relative contribution of these parameters varied within cell types. These results indicate that T lymphocytes face different cell rigidities when interacting with myeloid APCs in vivo and that this mechanical landscape changes under inflammation.  相似文献   

17.
Purpose: Dendritic cells (DCs) play an important role in the hosts immunosurveillance against cancer. It has been shown that the function of DCs is impaired and their population decreased in a cancer-bearing host. In the present study, we investigated the mechanism of down-regulation of DCs in a cancer-bearing host. Methods: We evaluated the relationship between DC infiltration and production of vascular endothelial growth factor (VEGF) in carcinoma tissue by immunohistochemistry. Furthermore, functional and phenotypical alterations of DCs were evaluated when monocyte-derived, mature DCs were treated with VEGF in vitro. Monocyte-derived DCs were generated in a culture of monocyte with interleukin 4 (IL-4) and granulocyte-macrophage colony-stimulating factor, and the maturation of DCs was induced by either lipopolysaccharide (LPS) or a proinflammatory cytokine cocktail: tumor-necrosis factor , prostaglandin E2, IL-6, and IL-1. Results: A significant inverse correlation was found between the density of DCs and the quantity of VEGF production in gastric carcinoma tissue (r=–0.39, p<0.05). In LPS-induced maturation, the ability of mature DCs to stimulate allogenic T cells and produce IL-12 (p70 heterodimer) was suppressed by the addition of VEGF in a dose-dependent manner. A lesser expression of costimulatory molecules (CD80 and CD86) was seen in DCs treated with exogenous VEGF than in DCs not treated with VEGF. The population of dead DCs (early and late apoptosis) treated with VEGF increased more than that without VEGF treatment, using the annexin V and propidium iodide evaluation in DCs matured by LPS. In contrast, in DCs matured by the proinflammatory cytokine cocktail, the down-regulation of costimulatory molecules and induction of DC apoptosis was not seen. Conclusions: These findings show that the inhibition of DC maturation by VEGF differs depending on the maturation status of the DCs.Abbreviations APC antigen-presenting cells - DC dendritic cells - ELISA enzyme-linked immunosorbent assay - FACS fluorescence-activated cell sorter - FCS fetal calf serum - FITC fluorescein isothiocyanate - GM-CSF granulocyte-macrophage colony-stimulating factor - HLA human leukocyte antigen - IL interleukin - LPS lipopolysaccharide - mAb monoclonal antibody - MHC major histocompatibility complex - PBS phosphate-buffered saline - PCNA proliferative cell nuclear antigen - PE phycoerythrin - PG prostaglandin - PI propidium iodide - TNF tumor-necrosis factor - VEGF vascular endothelial growth factor This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan.  相似文献   

18.
Nitric oxide synthase (NOS) isoenzymes generate nitric oxide (NO), a sensitive multifunctional intercellular signal molecule. High NO levels are produced by an inducible NOS (iNOS) in activated macrophages in response to proinflammatory agents, many of which also regulate local bone metabolism. NO is a potent inhibitor of osteoclast bone resorption, whereas inhibitors of NOS promote bone resorption both in vitro and in vivo. The possibility that osteoclasts, like macrophages, express a regulated iNOS and produce NO as a potential autocrine signal following inflammatory stimulation was investigated in well-characterized avian marrow-derived osteoclast-like cells. NO production (reflected by medium nitrite levels) was markedly elevated in these cells by the proinflammatory agents lipopolysaccharide (LPS) and the synergistic action of IL-1α, TNFα, and IFNγ. Inhibitors of NOS activity (aminoguanidine, L-NAME) or iNOS induction (dexamethasone, TGFβ) reduced LPS-stimulated nitrite production. LPS also increased the NOS-associated diaphorase activity of these cells and their reactivity with anti-iNOS antibodies. RT-PCR cloning, using avian osteoclast-like cell RNA and human iNOS primers, yielded a novel 900 bp cDNA with high sequence homology (76%) to human, rat, and mouse iNOS genes. In probing osteoclast-like cell RNA with the PCR-derived iNOS cDNA, a 4.8 kb mRNA species was detected whose levels were greatly increased by LPS. Induction of iNOS mRNA by LPS, or by proinflammatory cytokines, occurred prior to the rise of medium nitrite in time course studies and was diminished by dexamethasone. Moreover, osteoclast-like cells demonstrated an upregulation of NO production and iNOS mRNA by IL-8 and IL-10, regulatory mechanism's not previously described. It is concluded that osteoclast-like cells express a novel iNOS that is upregulated by inflammatory mediators, leading to NO production. Therefore, NO may serve as both a paracrine and autocrine signal for modulating osteoclast bone resorption. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4+ and CD8+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4+CD25+Foxp3+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8+ T cell proliferation and limited the induction of IFN-γ producing CD8+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号