首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammation during RSV infection of adult mice, we studied the role of these cells in exacerbated inflammation following neonatal RSV sensitization/adult reinfection. Compared to mice undergoing primary infection as adults, neonatally sensitized mice showed enhanced airway fluid levels of interleukin-6 (IL-6), alpha interferon (IFN-α), CXCL1 (keratinocyte chemoattractant/KC), and tumor necrosis factor alpha (TNF-α) at 12 to 24 h after reinfection and IL-4, IL-5, IFN-γ, and CCL11 (eotaxin) at day 4 after reinfection. Weight loss during reinfection was accompanied by an initial influx of NK cells and granulocytes into the airways and lungs, followed by T cells. NK cell depletion during reinfection attenuated weight loss but did not alter T cell responses. Depletion of alveolar macrophages with inhaled clodronate liposomes reduced both NK and T cell numbers and attenuated weight loss. These findings indicate a hitherto unappreciated role for the innate immune response in governing the pathogenic recall responses to RSV infection.  相似文献   

3.
Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis.  相似文献   

4.
Memory-like CD8+ T cells expressing eomesodermin are a subset of innate T cells initially identified in a number of genetically modified mice, and also exist in wild mice and human. The acquisition of memory phenotype and function by these T cells is dependent on IL–4 produced by PLZF+ innate T cells; however, their physiologic function is still not known. Here we found that these IL-4-induced innate CD8+ T cells are critical for accelerating the control of chronic virus infection. In CIITA-transgenic mice, which have a substantial population of IL-4-induced innate CD8+ T cells, this population facilitated rapid control of viremia and induction of functional anti-viral T-cell responses during infection with chronic form of lymphocytic choriomeningitis virus. Characteristically, anti-viral innate CD8+ T cells accumulated sufficiently during early phase of infection. They produced a robust amount of IFN-γ and TNF-α with enhanced expression of a degranulation marker. Furthermore, this finding was confirmed in wild-type mice. Taken together, the results from our study show that innate CD8+ T cells works as an early defense mechanism against chronic viral infection.  相似文献   

5.
6.
We characterized the cellular immune response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in 12- to 14-month-old BALB/c mice, a model that mimics features of the human disease. Following intranasal administration, the virus replicated in the lungs, with peak titers on day 2 postinfection. Enhanced production of cytokines (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokines (CXCL10, CCL2, CCL3, and CCL5) correlated with migration of NK cells, macrophages, and plasmacytoid dendritic cells (pDC) into the lungs. By day 7, histopathologic evidence of pneumonitis was seen in the lungs when viral clearance occurred. At this time, a second wave of enhanced production of cytokines (TNF-α, IL-6, gamma interferon [IFN-γ], IL-2, and IL-5), chemokines (CXCL9, CXCL10, CCL2, CCL3, and CCL5), and receptors (CXCR3, CCR2, and CCR5), was detected in the lungs, associated with an influx of T lymphocytes. Depletion of CD8+ T cells at the time of infection did not affect viral replication or clearance. However, depletion of CD4+ T cells resulted in an enhanced immune-mediated interstitial pneumonitis and delayed clearance of SARS-CoV from the lungs, which was associated with reduced neutralizing antibody and cytokine production and reduced pulmonary recruitment of lymphocytes. Innate defense mechanisms are able to control SARS-CoV infection in the absence of CD4+ and CD8+ T cells and antibodies. Our findings provide new insights into the pathogenesis of SARS, demonstrating the important role of CD4+ but not CD8+ T cells in primary SARS-CoV infection in this model.The global outbreak of severe acute respiratory syndrome (SARS) in 2003 that infected more than 8,000 people in 29 countries across five continents, with 774 deaths reported by the World Health Organization (54), was caused by a highly contagious coronavirus designated SARS-CoV (33). The elderly were more likely to die from SARS-CoV infection than younger people (7), with a case-fatality rate of 50% in people older than 65 years (14, 53). Disease pathogenesis in SARS is complex, with multiple factors leading to severe pulmonary injury and dissemination of the virus to other organs. High viral load; systemic infection; a cytokine storm with high levels of CXCL10/IP-10, CCL3/MIP-1α, and CCL2/MCP-1; massive lung infiltration by monocytes and macrophages; and rapid depletion of T cells are hallmarks of SARS (5, 13, 15, 21, 28, 35). The role of neutralizing antibodies (Abs) in protection from SARS-CoV infection has been well documented. Virus-specific neutralizing Abs reduce viral load, protect against weight loss, and reduce histopathology in animal models (42, 47, 48). Although the role of type I interferons (IFNs) in the natural history of SARS is controversial (5, 9, 59), the innate defense system appears to be critical for controlling SARS-CoV replication in mice (23, 41). Mice lacking normal innate signaling due to STAT1 or MyD88 deficiency are highly susceptible to SARS-CoV infection. Virus-specific T-cell responses are present in convalescent patients with SARS (27, 55). However, little is known about the role of T cells in the acute phase of SARS.Several mouse models have been developed for the in vivo study of SARS pathogenesis. However, no single model accurately reproduces all aspects of the human disease. SARS-CoV replicates in the upper and lower respiratory tracts of 4- to 8-week-old mice and is cleared rapidly; infection is associated with transient mild pneumonitis, and cytokines are not detectable in the lungs (20, 42, 49). A SARS-CoV isolate that was adapted by serial passage in mice (MA-15) replicates to a higher titer and for a longer duration in the lungs than the unadapted (Urbani) virus and is associated with viremia and mortality in young mice (36), but the histologic changes in the lungs are caused by high titers of virus and cell death without significant infiltrates of inflammatory cells. The heightened susceptibility of elderly patients to SARS led us to develop a pneumonia model in 12- to 14-month-old (mo) BALB/c mice using the Urbani virus. In this model, pulmonary replication of virus was associated with signs of clinical illness and histopathological evidence of disease characterized by bronchiolitis, interstitial pneumonitis, diffuse alveolar damage, and fibrotic scarring (3), thus resembling SARS in the elderly. We evaluated the host response to SARS-CoV infection by examining the gene expression profile in the senescent mouse model and found a robust response to virus infection, with an increased expression of several immune response and cell-to-cell signaling genes, including those for tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), CCL2, CCL3, CXCL10, and IFN-γ (1).In this study, we characterize the cellular immune response to SARS-CoV infection in 12- to 14-mo BALB/c mice in terms of the protein and gene expression of inflammatory mediators, migration of inflammatory cells, and virus-specific T-cell responses in the lungs during the course of disease. We evaluated the role of T cells in disease pathogenesis and viral clearance by depleting T-cell subsets at the time of infection and found an important role for CD4+ T cells (but not CD8+ T cells) in primary infection with SARS-CoV in this model.  相似文献   

7.
8.
9.
Plasmacytoid dendritic cells (pDC) are an important component of the innate immune response, producing large amounts of alpha interferon in response to viral stimulation in vitro. Under noninflammatory conditions, pDC are not found in the skin and are restricted in location to the blood and lymph nodes. Therefore, their role in mucosal and cutaneous herpes simplex virus (HSV) infection has not been well-defined. In this study we show a role for human pDC in the immune response to HSV infection. First, by confocal microscopy we showed that pDC infiltrate the dermis of recurrent genital herpes simplex lesions at early and late phases, often at the dermo-epidermal junction. We then showed that pDC in vitro are resistant to HSV infection despite expressing the entry receptors CD111, CD112, and HVE-A. Within the lesions, pDC were found closely associated with CD3+ lymphocytes and NK cells, especially those which were activated (CD69+). Furthermore, these HSV-exposed pDC were able to stimulate virus-specific autologous T-lymphocyte proliferation. We conclude from this work that pDC may contribute to the immune control of recurrent herpes virus infection in vivo.  相似文献   

10.
Chemokines and their receptors play a critical role in orchestrating immunity to microbial pathogens, including the orally acquired Th1-inducing protozoan parasite Toxoplasma gondii. Chemokine receptor CXCR3 is associated with Th1 responses, and here we use bicistronic CXCR3-eGFP knock-in reporter mice to demonstrate upregulation of this chemokine receptor on CD4+ and CD8+ T lymphocytes during Toxoplasma infection. We show a critical role for CXCR3 in resistance to the parasite in the intestinal mucosa. Absence of the receptor in Cxcr3−/− mice resulted in selective loss of ability to control T. gondii specifically in the lamina propria compartment. CD4+ T cells were impaired both in their recruitment to the intestinal lamina propria and in their ability to secrete IFN-γ upon stimulation. Local recruitment of CD11b+Ly6C/G+ inflammatory monocytes, recently reported to be major anti-Toxoplasma effectors in the intestine, was not impacted by loss of CXCR3. However, inflammatory monocyte activation status, as measured by dual production of TNF-α and IL-12, was severely impaired in Cxcr3−/− mice. Strikingly, adoptive transfer of wild-type but not Ifnγ−/− CD4+ T lymphocytes into Cxcr3−/− animals prior to infection corrected the defect in inflammatory macrophage activation, simultaneously reversing the susceptibility phenotype of the knockout animals. Our results establish a central role for CXCR3 in coordinating innate and adaptive immunity, ensuring generation of Th1 effectors and their trafficking to the frontline of infection to program microbial killing by inflammatory monocytes.  相似文献   

11.
12.
Indirubin, a traditional Chinese medicine, is used to treat autoimmune diseases in clinics. However, the effects of indirubin on the immunosuppressive CD4+CD25+Foxp3+ regulatory T cells (Treg) have not been addressed. Thus, we aimed to investigate the effects of indirubin on CD4+CD25+Treg cells in immune thrombocytopenia (ITP) CBA mice, which were established by immunization with Wistar rat platelets. 50 mg/kg indirubin treatment daily for 4 weeks significantly decreased anti-platelet antibody production and prevented the decrease of platelets caused by immunization in ITP mice. Consistently, indirubin significantly enhanced the percentage and cell number of CD4+CD25+Foxp3+Treg cells in the peripheral blood, spleen and lymph nodes. We also observed a significant increase of the frequency and cell number of CD4+CD25+Foxp3+Treg cells in the thymus upon indirubin treatment. Furthermore, CD4+CD25+Treg cells from indirubin-treated mice showed similar immunosuppression on T effector cells as compared to those from control mice. Altogether, indirubin ameliorates ITP by enhancing CD4+CD25+Foxp3+Treg cell level with preserving immunosuppressive function.  相似文献   

13.

Background

Dendritic cells (DCs) determine the activation and polarization of T cells via expression of costimulatory molecules and secretion of cytokines. The function of DCs derived from monocytes ex vivo strongly depends on the composition of the maturation cocktail used.

Methodology/Principal Findings

We analyzed the effect of costimulatory molecule expression and cytokine secretion by DCs on T and natural killer (NK) cell activation by conducting a head-to-head comparison of a Toll-like receptor (TLR) agonist-based cocktail with the standard combination of proinflammatory cytokines or IL-10 alone. We could show that TLR-induced DCs are characterized by a predominance of costimulatory over coinhibitory molecules and by high secretion of IL-12p70, but not IL-10. Functionally, these signals translated into an increase in IFN-γ secreting Th1 cells and a decrease in regulatory T cells. T cell activation and polarization were dependent on IL-12p70 and CD86, but remarkably not on CD80 signaling. By means of IL-12p70 secretion, only TLR-induced DCs activated NK cells.

Conclusions/Significance

TLR-matured DCs are highly suitable for application in immunotherapeutic strategies that rely on strong type 1 polarization and NK cell activation. Their effects particularly depend on high CD86 expression and IL-12p70 secretion.  相似文献   

14.
The role of CD4+ helper T cells in modulating the acquired immune response to herpes simplex virus type 1 (HSV-1) remains ill defined; in particular, it is unclear whether CD4+ T cells are needed for the generation of the protective HSV-1-specific CD8+-T-cell response. This study examined the contribution of CD4+ T cells in the generation of the primary CD8+-T-cell responses following acute infection with HSV-1. The results demonstrate that the CD8+-T-cell response generated in the draining lymph nodes of CD4+-T-cell-depleted C57BL/6 mice and B6-MHC-II−/− mice is quantitatively and qualitatively distinct from the CD8+ T cells generated in normal C57BL/6 mice. Phenotypic analyses show that virus-specific CD8+ T cells express comparable levels of the activation marker CD44 in mice lacking CD4+ T cells and normal mice. In contrast, CD8+ T cells generated in the absence of CD4+ T cells express the interleukin 2 receptor α-chain (CD25) at lower levels. Importantly, the CD8+ T cells in the CD4+-T-cell-deficient environment are functionally active with respect to the expression of cytolytic activity in vivo but exhibit a diminished capacity to produce gamma interferon and tumor necrosis factor alpha. Furthermore, the primary expansion of HSV-1-specific CD8+ T cells is diminished in the absence of CD4+-T-cell help. These results suggest that CD4+-T-cell help is essential for the generation of fully functional CD8+ T cells during the primary response to HSV-1 infection.Infection due to herpes simplex virus type 1 (HSV-1) results in a wide spectrum of clinical presentations depending on the host''s age, the host''s immune status, and the route of inoculation (47). HSV-1 typically causes mild and self-limited lesions on the orofacial areas or genital sites. However, the disease can be life-threatening, as in the case of neonatal and central nervous system infections (18). The host''s immune responses, particularly CD8+ T cells, play an important role in determining the outcome of HSV infections in both the natural human host (18, 19, 28) and experimental murine models (11, 43). Immunodepletion and adoptive transfer studies have demonstrated the role of CD8+ T cells in reducing viral replication, resolving cutaneous disease, and providing overall protection upon rechallenge (6, 25, 26). CD8+ T cells play a particularly important role in preventing infection of the peripheral nervous system (PNS) and the reactivation of latent virus from neurons in the sensory ganglia of infected mice (21, 24, 36). The mechanisms that CD8+ T cells employ include gamma interferon (IFN-γ) production and functions associated with cytolytic granule content at the sites of primary infection (23, 31, 38). In the PNS of infected mice, the mechanisms primarily involve IFN-γ secretion (16, 20, 29), particularly against infected neurons expressing surface Qa-1 (41). Histopathological evidence from HSV-1-infected human ganglion sections show a large CD8+-T-cell infiltrate and the presence of inflammatory cytokines, suggesting that the presence of activated, effector memory cells within the PNS is important for maintaining HSV-1 latency in the natural human host (10, 42).The generation of a robust CD8+-T-cell response is essential for the control of various infectious pathogens. Some studies suggest that a brief interaction with antigen-presenting cells (APCs) is sufficient for CD8+-T-cell activation and expansion into functional effectors (44). However, the magnitude and quality of the overall CD8+-T-cell response generated may be dependent on additional factors (49). Recent evidence suggests that CD4+ T cells facilitate the activation and development of CD8+-T-cell responses either directly through the provision of cytokines or indirectly by the conditioning of dendritic cells (DC) (8, 48, 51). Those studies suggested that the latter mechanism is the dominant pathway, wherein CD4+ T cells assist CD8+-T-cell priming via the engagement of CD40 ligand (CD154) on CD4+ T cells and CD40 expressed on DC (4, 30, 33). This interaction results in the activation and maturation of DC, making them competent to stimulate antigen-specific CD8+-T-cell responses (35, 37).The requirement for CD4+-T-cell help in the generation of primary and secondary CD8+-T-cell responses to antigen varies. Primary CD8+-T-cell responses to infectious pathogens, such as Listeria monocytogenes, lymphocytic choriomeningitis virus (LCMV), influenza virus, and vaccinia virus, can be mounted effectively independently of CD4+-T-cell help (3, 12, 22, 34). In contrast, primary CD8+-T-cell responses to nonmicrobial antigens display an absolute dependence on CD4+-T-cell help (4, 5, 30, 33, 46). This observed difference in the requirement for CD4+-T-cell help may ultimately be a product of the initial inflammatory stimulus generated following immunization (49). Microbial antigens trigger an inflammatory response that can lead to the direct activation and priming of APCs, such as DC, thereby bypassing the need for CD4+-T-cell help. Nonmicrobial antigens, however, trigger an attenuated inflammatory response that does not directly activate and prime DCs. In the absence of this inflammation, CD4+ T cells are thought to condition and license DC functions through CD154/CD40 interactions, which leads to the subsequent activation of antigen-specific CD8+-T-cell responses (5, 49). Even in the case of pathogens where primary CD8+-T-cell responses were independent of CD4+-T-cell help, the secondary responses to these pathogens were found to be defective in the absence of CD4+-T-cell help (3, 12, 34, 40).The requirement for CD4+-T-cell help in priming CD8+-T-cell responses against HSV-1 infection is not well defined. Earlier studies with HSV-1 suggested that CD4+ T cells play an important role in the generation of primary CD8+-T-cell responses, detected in vitro, to acute infection with HSV-1 (14), principally through the provision of interleukin 2 (IL-2) for optimal CD8+-T-cell differentiation and proliferation. Subsequent studies, utilizing an in vivo approach, indicated that CD4+ T cells were not required for CD8+-T-cell-mediated cytolytic function (23). CD4+ T cells are thought to provide help by conditioning DC in a cognate, antigen-specific manner, thereby making them competent to stimulate HSV-1-specific CD8+-T-cell responses (37). By contrast, findings from other studies show that CD4+-T-cell-depleted mice were able to fully recover from acute infection with HSV-1 (38). These studies imply that the absence of CD4+ T cells does not prevent priming of CD8+ T cells in vivo.Studies from this laboratory have identified two distinct HSV-1-specific CD8+-T-cell subpopulations generated during the primary response, based upon the ability to synthesize IFN-γ following antigenic stimulation in vitro (1). To better understand the need for CD4+-T-cell help, we examined the functional characteristics and phenotypes of these CD8+-T-cell populations generated during a primary response to acute infection with HSV-1 in mice lacking CD4+ T cells. Our findings show that primary CD8+-T-cell responses to HSV-1 are compromised in the absence of CD4+-T-cell help. Specifically, the HSV-1 gB-specific CD8+ T cells produced in the absence of CD4+ T cells were found to be active with regard to cytolysis in vivo but were functionally impaired in the production of IFN-γ and TNF-α compared with intact C57BL/6 mice. Virus-specific CD8+ T cells were also reduced in number in CD4-depleted mice and in B6 mice lacking major histocompatibility complex (MHC) class II expression (B6-MHC-II−/−) compared to wild-type (WT) mice. In addition, our data showed higher virus burdens in the infectious tissues obtained from mice lacking CD4+ T cells than in those from intact mice. Collectively, these findings demonstrate that CD4+-T-cell help is essential for the generation of primary CD8+-T-cell responses following acute cutaneous infection with HSV-1.  相似文献   

15.
To better understand the initiation of CD8+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis.  相似文献   

16.
17.
Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14.  相似文献   

18.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

19.
In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.  相似文献   

20.
HIV-1 innate sensing requires direct contact of infected CD4+ T cells with plasmacytoid dendritic cells (pDCs). In order to study this process, the protocols described here use freshly isolated human peripheral blood mononuclear cells (PBMCs) or plasmacytoid dendritic cells (pDCs) to sense infections in either T cell line (MT4) or heterologous primary CD4+ T cells. In order to ensure proper sensing, it is essential that PBMC are isolated immediately after blood collection and that optimal percentage of infected T cells are used. Furthermore, multi-parametric flow cytometric staining can be used to confirm that PBMC samples contain the different cell lineages at physiological ratios. A number of controls can also be included to evaluate viability and functionality of pDCs. These include, the presence of specific surface markers, assessing cellular responses to known agonist of Toll-Like Receptors (TLR) pathways, and confirming a lack of spontaneous type-I interferon (IFN) production. In this system, freshly isolated PBMCs or pDCs are co-cultured with HIV-1 infected cells in 96 well plates for 18-22 hr. Supernatants from these co-cultures are then used to determine the levels of bioactive type-I IFNs by monitoring the activation of the ISGF3 pathway in HEK-Blue IFN-α/β cells. Prior and during co-culture conditions, target cells can be subjected to flow cytometric analysis to determine a number of parameters, including the percentage of infected cells, levels of specific surface markers, and differential killing of infected cells. Although, these protocols were initially developed to follow type-I IFN production, they could potentially be used to study other imuno-modulatory molecules released from pDCs and to gain further insight into the molecular mechanisms governing HIV-1 innate sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号