首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Diazotrophic bacteria isolated from the rhizosphere of Chinese cabbage were assessed for other plant growth promoting characteristics viz., production of IAA, ethylene, ACC deaminase, phosphate solubilization, and gnotobiotic root elongation. Their effect on inoculation to Chinese cabbage was also observed under growth chamber conditions. A total of 19 strains that showed higher nitrogenase activity identified by 16S rRNA gene sequence analysis were found to be the members of the genera Pseudomonas and Agrobacterium belonging to α- and γ-Proteobacteria groups. These strains were also efficient in producing IAA and ACC deaminase though they produced low levels of ethylene and no phosphate solubilization. In addition, inoculation of selected diazotrophic bacterial strains significantly increased seedling length, dry weight, and total nitrogen when compared to uninoculated control. The colonization of crop plants by diazotrophic bacteria can be affected by many biotic and abiotic factors, and further studies are oriented towards investigating the factors that could influence the establishment of a selected bacterial community.  相似文献   

2.
[目的]获得具有产ACC、IAA,铁载体,能固氮或解磷的潜在促生菌株.[方法]通过稀释涂布的方法,从麻疯树根际土壤中分离得到98株细菌,从中选取28株以产l-氨基环丙烷-1-羧酸(ACC)脱氨酶为主要促生指标进行筛选,同时检测了其产吲哚乙酸(IAA)、固氮、解磷及铁载体等促生指标的能力.[结果]结果显示,46%的菌株能产ACC脱氨酶,其含量最高可达到128.308 μmol α-KA/(mg.h),68%的菌株能产生IAA,54%的菌株有固氮的能力,32%的菌株有解磷的能力.少量菌株同时具有产ACC脱氨酶、IAA,固氮,解磷等能力.挑选代表性菌株进行16S rRNA序列分析,这些菌株属于芽孢杆菌属(Bacillus)、节杆菌属(Arthrobacter)、假单胞菌属(Pseudomonas)和产碱杆菌属(Advenella)等8个属,其中多数菌株(50%)属于芽孢杆菌属,系统发育分析表明菌株KLBMP 4817、KLBMP 4821和KLBMP 4824为窄食单胞菌属(Stenotrophomonas)和类芽孢杆菌属(Paenibacillus)的潜在新种.[结论]攀枝花麻疯树根际土壤细菌中含有丰富的遗传多样性,且存在大量的促生菌株.其中,菌株KLBMP 4804产ACC脱氨酶含量最高.菌株KLBMP4820产IAA含量最显著.  相似文献   

3.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

4.
冯瑞章  周诰均  魏琴  周万海  范轶玲  秦欢 《广西植物》2016,36(11):1396-1402
筛选具有溶磷能力的植物内生细菌,并探索该类菌的促生和抗逆性能,有助于扩大溶磷微生物来源、研发微生物肥料、改善土壤磷素营养和提高农业产量。该研究以从油樟组织中分离得到的50株内生细菌为材料,通过溶磷圈法初筛得到24株具有溶磷潜能的菌株,利用钼蓝比色法测定它们的溶磷能力和培养液的pH值,并研究溶磷能力较强菌株产生吲哚乙酸( IAA)、铁载体、1-氨基环丙烷-1-羧酸( ACC)脱氨酶、几丁质酶等促生和抗逆性能。结果表明:24株油樟内生细菌都能从磷酸钙中释放出有效磷(溶磷量为51.26~237.08μg·mL-1),其中,YG60、YG43、YG36、YG25、YG49、YG44株菌的溶磷量较高,均大于150μg·mL-1。接种油樟内生菌后,培养液的pH值均有一定程度的降低,但菌株溶磷量与培养液pH值间不存在显著相关性。6株溶磷量大于150μg · mL-1的菌株大部分具有分泌IAA、产铁载体、ACC脱氨酶活性和几丁质酶活性的能力;其中YG43、YG60和YG25分泌IAA的能力较强(IAA分泌量分别为22.55、18.75和16.41μg·mL-1),YG43和YG60产铁载体的能力较强(As/Ar小于0.6),YG43、YG60和YG25的ACC脱氨酶活性(分别为0.194、0.224、0.208 U·mg-1)较高,YG43和YG60的几丁质酶活性(分别为2.968 U和2.502 U)较高。综合菌株的溶磷、促生和抗逆性能,认为YG43、YG60和YG25菌株在促进植物生长、提高植物抗性及生物防治方面具有较好的应用前景。  相似文献   

5.

Background

All plants in nature harbor a diverse community of endophytic bacteria which can positively affect host plant growth. Changes in plant growth frequently reflect alterations in phytohormone homoeostasis by plant-growth-promoting (PGP) rhizobacteria which can decrease ethylene (ET) levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or produce indole acetic acid (IAA). Whether these common PGP mechanisms work similarly for different plant species has not been rigorously tested.

Methodology/ Principal Findings

We isolated bacterial endophytes from field-grown Solanum nigrum; characterized PGP traits (ACC deaminase activity, IAA production, phosphate solubilization and seedling colonization); and determined their effects on their host, S. nigrum, as well as on another Solanaceous native plant, Nicotiana attenuata. In S. nigrum, a majority of isolates that promoted root growth were associated with ACC deaminase activity and IAA production. However, in N. attenuata, IAA but not ACC deaminase activity was associated with root growth. Inoculating N. attenuata and S. nigrum with known PGP bacteria from a culture collection (DSMZ) reinforced the conclusion that the PGP effects are not highly conserved.

Conclusions/ Significance

We conclude that natural endophytic bacteria with PGP traits do not have general and predictable effects on the growth and fitness of all host plants, although the underlying mechanisms are conserved.  相似文献   

6.
Phosphate solubilizing bacteria (PSB) were isolated from the rhizosphere of Chinese cabbage and screened on the basis of their solubilization of inorganic tricalcium phosphate in liquid cultures. Ten strains that had higher solubilization potential were selected, and they also produced indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and siderophores. The strains were identified to be members of Pseudomonas, by 16S rDNA sequence analysis. Seed bacterization with PSB strains increased the root elongation and biomass of Chinese cabbage in seedling culture, although they had no effect on phosphorus uptake of plants. The plant growth promotion by PSB in this study could be due to the production of phytohormones or mechanisms other than phosphate solubilization, since they had no effect on P nutrition.  相似文献   

7.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase converts ACC, the precursor of the plant hormone ethylene to α-ketobutyrate and ammonium. The enzyme has been identified in few soil bacteria, and is proposed to play a key role in plant growth promotion. In this study, the isolates of plant growth promoting rhizobacteria were screened for ACC deaminase activity based on their ability to grow on ACC as a sole nitrogen source. The selected isolates showed the presence of other plant growth promoting characteristics such as IAA production, phosphate solubilization and siderophore production. The role of ACC deaminase in lowering ethylene production under cadmium stress condition was also studied by measuring in vitro ethylene evolution by wheat seedlings treated with ACC deaminase positive isolates. Nucleic acid hybridization confirmed the presence of ACC deaminase gene (acdS) in the bacterial isolates.  相似文献   

8.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

9.
Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.  相似文献   

10.
Plant growth promoting rhizobacteria affects the overall performance of plants by one or combination of mechanisms. However, little information is available on how ACC deaminase secreting bacteria enhance crop production. The present study aimed at identifying ACC deaminase producing and phosphate solubilizing bacterial strains and to assess their plant growth promoting activities. Additionally, the effect of two ACC deaminase positive bacterial strains Pseudomonas putida and Rhizobium leguminosarum on pea plants was determined to find a novel and compatible bacterial pairing for developing efficient inoculants for enhancing legume production and reducing dependence on chemical fertilizers. The isolated bacterial cultures were characterized biochemically and by 16S rRNA sequence analysis. The plant growth promoting activities was determined using standard microbiological methods. The impact of P. putida and R. leguminosarum, on pea plants was determined both in pots and in field environments. Of the total 40 bacterial strains, strain PSE3 isolated from Mentha arvenss rhizosphere and RP2 strain from pea nodules produced ACC deaminase, solubilized insoluble phosphate, synthesized indole acetic acid, ammonia, cyanogenic compounds, exopolysaccharides and had antifungal activity. The dual inoculation of P. putida strain PSE3 and R. leguminosarum strain RP2 had largest positive effect and markedly increased the growth, symbiotic characteristics, nutrient pool and quantity and quality of pea seeds. The measured parameters were further augmented when inoculated pea plants were grown in soils treated with urea or DAP. A significant variation in the measured parameters of pea plants was observed under both pot and field trials following microbial inoculation but the bacterial cultures did not differ significantly in growth promoting activities. The results suggest that ACC deaminase positive bacterial cultures endowed with multiple potential can be targeted to develop mixed inoculants for enhancing pea production and hence, to reduce dependence on synthetic fertilizers.  相似文献   

11.
This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions.  相似文献   

12.
In order to stimulate selection for plant‐associated bacteria with the potential to improve Cd phytoextraction, yellow lupine plants were grown on a metal‐contaminated field soil. It was hypothesised that growing these plants on this contaminated soil, which is a source of bacteria possessing different traits to cope with Cd, could enhance colonisation of lupine with potential plant‐associated bacteria that could then be inoculated in Cd‐exposed plants to reduce Cd phytotoxicity and enhance Cd uptake. All cultivable bacteria from rhizosphere, root and stem were isolated and genotypically and phenotypically characterised. Many of the rhizobacteria and root endophytes produce siderophores, organic acids, indole‐3‐acetic acid (IAA) and aminocyclopropane‐1‐carboxylate (ACC) deaminase, as well as being resistant to Cd and Zn. Most of the stem endophytes could produce organic acids (73.8%) and IAA (74.3%), however, only a minor fraction (up to 0.7%) were Cd or Zn resistant or could produce siderophores or ACC deaminase. A siderophore‐ and ACC deaminase‐producing, highly Cd‐resistant Rhizobium sp. from the rhizosphere, a siderophore‐, organic acid‐, IAA‐ and ACC deaminase‐producing highly Cd‐resistant Pseudomonas sp. colonising the roots, a highly Cd‐ and Zn‐resistant organic acid and IAA‐producing Clavibacter sp. present in the stem, and a consortium composed of these three strains were inoculated into non‐exposed and Cd‐exposed yellow lupine plants. Although all selected strains possessed promising in vitro characteristics to improve Cd phytoextraction, inoculation of none of the strains (i) reduced Cd phytotoxicity nor (ii) strongly affected plant Cd uptake. This work highlights that in vitro characterisation of bacteria is not sufficient to predict the in vivo behaviour of bacteria in interaction with their host plants.  相似文献   

13.
In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate (S2O3) oxidation, the production of ammonia (NH3), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1- aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated saltstressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.  相似文献   

14.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

15.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   

16.
Salt stress has multiple damaging effects on plants including physiological damage, reduced growth, and productivity. Plant growth-promoting rhizobacteria (PGPR) are one of the valuable options to mitigate the negative effects of this stress. In the present study, native bacteria from chickpea’s rhizosphere were isolated, and checked for their salt tolerance and plant growth-promoting attributes (phosphate (P) solubilization, siderophores, indole-3-acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase production). One isolate, subsequently identified as Pantoea dispersa, showed appreciable production of IAA (218.3 µg/ml) and siderophores (60.33% SU), P-solubilization (3.64 µg/ml) and ACC deaminase activity (207.45 nmol/mg/h) in the presence of 150 mM NaCl, under laboratory conditions. Salt stress in uninoculated chickpea (GPF2 cultivar) plants induced high accumulation of Na+ ions (3.86 mg g?1 dw) in the leaves, along with significant reduction in K+ uptake, membrane integrity, chlorophyll concentration, and leaf water content, thus resulting in impaired growth of the plant and yield (pods and seeds) in a salt concentration-dependent manner. The damage due to salt stress was restored significantly in plants inoculated with P. dispersa. A significant improvement in biomass (32–34%), pods number (31–34.5%), seeds number (32–35.7%), pods weight (30–32.6%), and seeds weight (27–35%) per plant occurred in salt stress-affected plants, which was associated with significant reduction in Na+ uptake, reduced membrane damage, significantly improved leaf water content, chlorophyll content, and K+ uptake. This study suggests for the first time that native P. dispersa strain PSB3 can be used to alleviate the negative effects of salt stress on chickpea plants and holds the potential to be used as a biofertilizer.  相似文献   

17.

Background and aims

Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated.

Methods

A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N2-fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified.

Results

Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Streptomyces, Isoptericola, and Microbacterium. Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues.

Conclusions

These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.  相似文献   

18.
A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the growth of peas.  相似文献   

19.
Eight bacterial isolates from the larval guts of Diamondback moths (Plutella xylostella) were tested for their plant growth–promoting (PGP) traits and effects on early plant growth. All of the strains tested positive for nitrogen fixation and indole 3-acetic acid (IAA) and salicylic acid production but negative for hydrogen cyanide and pectinase production. In addition, five of the isolates exhibited significant levels of tricalcium phosphate and zinc oxide solubilization; six isolates were able to oxidize sulfur in growth media; and four isolates tested positive for chitinase and β-1,3-glucanase activities. Based on their IAA production, six strains including four that were 1-aminocyclopropane-1-carboxylate (ACC) deaminase positive and two that were ACC deaminase negative were tested for PGP activity on the early growth of canola and tomato seeds under gnotobiotic conditions. Acinetobacter sp. PSGB04 significantly increased root length (41%), seedling vigor, and dry biomass (30%) of the canola test plants, whereas Pseudomonas sp. PRGB06 inhibited the mycelial growth of Botrytis cinerea, Colletotrichum coccodes, C. gleospoiroides, Rhizoctonia solani, and Sclerotia sclerotiorum under in vitro conditions. A significant increase, greater than that of the control, was also noted for growth parameters of the tomato test plants when the seeds were treated with PRGB06. Therefore, the results of the present study suggest that bacteria associated with insect larval guts possess PGP traits and positively influence plant growth. Therefore, insect gut bacteria as effective PGP agents represent an unexplored niche and may broaden the spectrum of beneficial bacteria available for crop production.  相似文献   

20.
Twenty rhizobacterial strains containing 1-aminocyclopropane-1-carboxylate deaminase were isolated from the rhizosphere of salt-affected maize fields. They were screened for their growth-promoting activities under axenic conditions at 1, 4, 8, and 12 dS x m-1 salinity levels. Based upon the data of the axenic study, the 6 most effective strains were selected to conduct pot trials in the wire house. Besides one original salinity level (1.6 dS x m-1), 3 other salinity levels (4, 8, and 12 dS x m-1) were maintained in pots and maize seeds inoculated with selected strains of plant growth-promoting rhizobacteria, as well as uninoculated controls were sown. Results showed that the increase in salinity level decreased the growth of maize seedlings. However, inoculation with rhizobacterial strains reduced this depression effect and improved the growth and yield at all the salinity levels tested. Selected strains significantly increased plant height, root length, total biomass, cob mass, and grain yield up to 82%, 93%, 51%, 40%, and 50%, respectively, over respective uninoculated controls at the electrical conductivity of 12 dS x m-1. Among various plant growth-promoting rhizobacterial strains, S5 (Pseudomonas syringae), S14 (Enterobacter aerogenes), and S20 (Pseudomonas fluorescens) were the most effective strains for promoting the growth and yield of maize, even at high salt stress. The relatively better salt tolerance of inoculated plants was associated with a high K+/Na+ ratio as well as high relative water and chlorophyll and low proline contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号