首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV). Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine.  相似文献   

2.
In order to develop a desirable inexpensive, effective and safe vaccine against the very virulent infectious bursal disease virus (vvIBDV), we tried to take advantage of the emerging T4 bacteriophage surface protein display system. The major immunogen protein VP2 from the vvIBDV strain HK46 was fused to the nonessential T4 phage surface capsid protein, a small outer capsid (SOC) protein, resulting in the 49 kDa SOC-VP2 fusion protein, which was verified by sodium dodecylsulfate polyacrylamide gel electrophoresis and Western blot. Immunoelectromicroscopy showed that the recombinant VP2 protein was successfully displayed on the surface of the T4 phage. The recombinant VP2 protein is antigenic and showed reactivities to various monoclonal antibodies (mAbs) against IBDV, whereas the wild-type phage T4 could not react to any mAb. In addition, the recombinant VP2 protein is immunogenic and elicited specific antibodies in immunized specific pathogen free (SPF) chickens. More significantly, immunization of SPF chickens with the recombinant T4-VP2 phage protected them from infection by the vvIBDV strain HK46. When challenged with the vvIBDV strain HK46 at a dose of 100 of 50% lethaldose (LD50) per chicken 4 weeks after the booster was given, the group vaccinated with the T4-VP2 recombinant phage showed no clinical signs of disease or death, whereas the unvaccinated group and the group vaccinated with the wild-type T4 phage exhibited 100% clinical signs of disease and bursal damages, and 30%-40% mortality. Collectively, the data herein showed that the T4-displayed VP2 protein might be an inexpensive, effective and safe vaccine candidate against vvIBDV.  相似文献   

3.
VP22 of Marek’s disease virus serotype 1 (MDV-1) could function in protein transduction. In this study, an infectious bursal disease virus VP2 gene was fused to the carboxyl termini of VP22. It showed that the fusion protein did not spread into the bystander cells from the cells transfected with pVP22-VP2, as the VP22 alone could. The VP22 proteins were found to be translocated into all the nuclei in the neighboring COS-1 cells, as analyzed by a fluorescence assay. Although mice were immunized with the recombinant DNAs mixed with polyethylenimine (PEI) at a dose of 1:2, it failed to enhance the antibody response against IBDV VP2, as measured by the indirect ELISA assay, yet the cell mediated immune response was significantly increased. The ratio of CD8 /CD4 T cells was significantly increased in the immunized group with the fusion genes, compared with the group immunized with VP2 (P<0.05). Our results demonstrated that VP22 indeed enhances the cell-mediated response in the fused VP2 in a mice model system, possibly due to the fact that the IBDV VP2 could be carried into the surrounding cells at a limited level under pressure from MDV VP22.  相似文献   

4.
Pichia pastoris is commonly used for the production of recombinant proteins due to its preferential secretion of recombinant proteins, resulting in lower production costs and increased yields of target proteins. However, not all recombinant proteins can be successfully secreted in P. pastoris. A computational method that predicts the likelihood of a protein being secreted into the supernatant would be of considerable value; however, to the best of our knowledge, no such tool has yet been developed. We present a machine-learning approach called Presep to assess the likelihood of a recombinant protein being secreted by P. pastoris based on its pseudo amino acid composition (PseAA). Using a 20-fold cross validation, Presep demonstrated a high degree of accuracy, with Matthews correlation coefficient (MCC) and overall accuracy (Q2) scores of 0.78 and 95%, respectively. Computational results were validated experimentally, with six β-galactosidase genes expressed in P. pastoris strain GS115 to verify Presep model predictions. A strong correlation (R2 = 0.967) was observed between Presep prediction secretion propensity and the experimental secretion percentage. Together, these results demonstrate the ability of the Presep model for predicting the secretion propensity of P. pastoris for a given protein. This model may serve as a valuable tool for determining the utility of P. pastoris as a host organism prior to initiating biological experiments. The Presep prediction tool can be freely downloaded at http://www.mobioinfor.cn/Presep.  相似文献   

5.
6.
VP2 protein is the major host-protective immunogen of infectious bursal disease virus (IBDV) of chickens. Transgenic lines of Arabidopsis thaliana expressing recombinant VP2 were developed. The VP2 gene of an IBDV antigenic variant E strain was isolated, amplified by RT-PCR and introduced into a plant expression vector, pE1857, having a strong promoter for plant expression. A resulting construct with a Bar gene cassette for bialaphos selection in plant (rpE-VP2) was introduced into Agrobacterium tumefaciens by electroporation. Agrobacterium containing the rpE-VP2 construct was used to transform Ar. thaliana and transgenic plants were selected using bialaphos. The presence of VP2 transgene in plants was confirmed by PCR and Southern blot analysis and its expression was confirmed by RT-PCR. Western blot analysis and antigen-capture ELISA assay using monoclonal anti-VP2 were used to determine the expression of VP2 protein in transgenic plants. The level of VP2 protein in the leaf extracts of selected transgenic plants varied from 0.5% to 4.8% of the total soluble protein. Recombinant VP2 protein produced in plants induced antibody response against IBDV in orally-fed chickens.  相似文献   

7.
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.  相似文献   

8.
The expression of infectious bursal disease virus (IBDV) host-protective immunogen VP2 protein in rice seeds, its immunogenicity and protective capability in chickens were investigated. The VP2 cDNA of IBDV strain ZJ2000 was cloned downstream of the Gt1 promoter of the rice glutelin GluA-2 gene in the binary expression vector, pCambia1301-Gt1. Agrobacterium tumefaciens containing the recombinant vector was used to transform rice embryogenic calli, and 121 transgenic lines were obtained and grown to maturity in a greenhouse. The expression level of VP2 protein in transgenic rice seeds varied from 0.678% to 4.521% µg/mg of the total soluble seed protein. Specific pathogen-free chickens orally vaccinated with transgenic rice seeds expressing VP2 protein produced neutralizing antibodies against IBDV and were protected when challenged with a highly virulent IBDV strain, BC6/85. These results demonstrate that transgenic rice seeds expressing IBDV VP2 can be used as an effective, safe and inexpensive vaccine against IBDV.  相似文献   

9.
10.
Infectious bursal disease virus (IBDV), a member of the family Birnaviridae, is responsible for a highly contagious and economically important disease causing immunosuppression in chickens. IBDV variants isolated in the United States exhibit antigenic drift affecting neutralizing epitopes in the capsid protein VP2. To understand antigenic determinants of the virus, we have used a reverse-genetics approach to introduce selected amino acid changes-individually or in combination-into the VP2 gene of the classical IBDV strain D78. We thus generated a total of 42 mutants with changes in 8 amino acids selected by sequence comparison and their locations on loops P(BC) and P(HI) at the tip of the VP2 spikes, as shown by the crystal structure of the virion. The antibody reactivities of the mutants generated were assessed using a panel of five monoclonal antibodies (MAbs). Our results show that a few amino acids of the projecting domain of VP2 control the reactivity pattern. Indeed, the binding of four out of the five MAbs analyzed here is affected by mutations in these loops. Furthermore, their importance is highlighted by the fact that some of the engineered mutants display identical reactivity patterns but have different growth phenotypes. Finally, this analysis shows that a new field strain isolated from a chicken flock in Belgium (Bel-IBDV) represents an IBDV variant with a hitherto unobserved antigenic profile, involving one change (P222S) in the P(BC) loop. Overall, our data provide important new insights for devising efficient vaccines that protect against circulating IBDV strains.  相似文献   

11.
正Dear Editor,Infectious bursal disease virus(IBDV)causes infectious bursal disease,a highly contagious immunosuppressive disease that affects young chickens and causes economic losses in the poultry industry worldwide.IBDV replicates mainly in actively dividing B lymphocytes within the bursa of Fabricius(BF),leading to immunosuppression in affected flocks(Mahgoub et al.,2012).Viral protein 2(VP2),the only structural component of the IBDV  相似文献   

12.
Infectious bursal disease virus (IBDV) causes a highly immunosuppressive disease in chickens. Currently available, live IBDV vaccines can lead to generation of variant viruses. We have developed an alternative vaccine that will not create variant IBDV. By using the reverse genetics approach, we devised a recombinant Newcastle disease virus (NDV) vector from a commonly used vaccine strain LaSota to express the host-protective immunogen VP2 of a variant IBDV strain GLS-5. The gene encoding the VP2 protein of the IBDV was inserted into the most 3'-proximal locus of a full-length NDV cDNA for high-level expression. We successfully recovered the recombinant virus, rLaSota/VP2. The rLaSota/VP2 was genetically stable, at least up to 12 serial passages in chicken embryos, and was shown to express the VP2 protein. The VP2 protein was not incorporated into the virions of recombinant virus. Recombinant rLaSota/VP2 replicated to a titer similar to that of parental NDV strain LaSota in chicken embryos and cell cultures. To assess protective efficacy of the rLaSota/VP2, 2-day-old specific-pathogen-free chickens were vaccinated with the recombinant virus and challenged with a highly virulent NDV strain Texas GB or IBDV variant strain GLS-5 at 3 weeks postvaccination. Vaccination with rLaSota/VP2 generated antibody responses against both NDV and IBDV and provided 90% protection against NDV and IBDV. Booster immunization induced higher levels of antibody responses against both NDV and IBDV and conferred complete protection against both viruses. These results indicate that the recombinant NDV can be used as a vaccine vector for other avian pathogens.  相似文献   

13.
利用干酪乳杆菌作为传染性法氏囊病毒(IBDV)VP2抗原传递系统,探讨口服雏鸡的免疫次数、免疫剂量、免疫途径和攻毒保护效果。用pLA-VP2重组干酪乳杆菌对5日龄雏鸡进行二次和三次免疫,并设108、109、1010 CFU/mL的重组干酪乳杆菌组,间接ELISA检测血清IgG和小肠洗液sIgA,末免后7 d攻毒,计算保护效果。根据确定的2次免疫和109 CFU/mL免疫剂量免疫5日龄雏鸡,分别口服、滴鼻/点眼pLA-VP2/L.casei,口服、肌注商品活苗及口服pLA/L.casei和PBS为对照,监测IgG和sIgA抗体水平;末免后7 d检测脾淋巴细胞增殖情况并攻毒,7 d后剖检,观察法氏囊损伤程度并记录病变得分和保护率。结果表明各组的特异性sIgA、IgG抗体水平显著高于对照组(P0.01);口服pLA-VP2/L.casei组的淋巴细胞刺激指数显著高于其他组(P0.01),保护率高达83.3%,免疫保护效果优于滴鼻/点眼组。因此,构建的重组干酪乳杆菌的安全性优于商品活苗,可以作为IBDV候选疫苗。  相似文献   

14.
The purpose of the present work was to develop a novel, long-acting and potent human serum albumin/granulocyte colony stimulating factor (HSA/G-CSF) therapeutic fusion protein. The novel fusion protein, called HMG, was constructed by genetically fusing mutated human derived G-CSF (mG-CSF) to the C-terminal of HSA and then prepared in Pichia pastoris. The molecular mass of HMG was about 85 kDa and the isoelectric point was 5.3. Circular dichroism spectroscopy suggested that mG-CSF retained nearly all of its native secondary structure, regardless of fusion. The binding capabilities of mG-CSF moiety to G-CSF receptor and HSA moiety to warfarin showed very little change after fusing. The bioactivity of HMG (11.0×106 IU/mg) was more than twice that of rHSA/G-CSF (4.6×106 IU/mg). A mutation was made at the 718th amino acid of HMG, substituting Ala for Thr, to investigate the glycosylation of HMG expressed in P. pastoris. Data indicated that HMG was modified at Thr718, speculatively with the addition of a mannose chain. In conclusion, a novel HSA/G-CSF fusion protein was successfully constructed based on a mutated G-CSF. This protein showed more potent bioactivity than rHSA/G-CSF and thus may be a suitable long-acting G-CSF.  相似文献   

15.
应用Pichia酵母表达系统高效分泌表达了传染性传染性法氏囊病病毒vp2基因片段。首先用Primer5.0设计1对引物P1、P2,以插入IBDV vp2基因的PMDl8-T-VP2载体为模板,扩增出带有终止密码子的1.4kb片段,将此片段正向亚克隆到酵母表达载体pPICZα-A上,将构建好的重组载体pPICZα-A-VP2用Sac Ⅰ内切酶线性化后,电击转化整合入Pichia PastorisX-33酵母菌,经高浓度Zeocin^TM筛选、表型鉴定、诱导表达及表达产物的鉴定,得到高效表达vp2基因的酵母工程菌X-33/pPICZα-A-VP2。工程菌72h培养上清的SDS-PAGE电泳与免疫印迹结果显示,vp2基因表达产物大小约为55kDa,比预期的41kDa大。凝胶薄层扫描结合Bradford蛋白质总含量测定结果表明,表达产物占工程菌培养上清总蛋白的28%,表达量可达23mg/L。间接ELISA结果表明重组表达产物能够有效地区分法氏囊病病毒标准阳性与阴性血清。  相似文献   

16.
法氏囊病病毒vp2基因在酵母中的分泌表达及鉴定   总被引:1,自引:0,他引:1  
应用Pichia酵母表达系统高效分泌表达了传染性传染性法氏囊病病毒vp2基因片段.首先用Primer5.0设计1对引物P1、P2,以插入IBDV vp2基因的PMD18-T-VP2载体为模板,扩增出带有终止密码子的1.4kb片段,将此片段正向亚克隆到酵母表达载体pPICZα-A上,将构建好的重组载体pPICZα-A-VP2用Sac Ⅰ内切酶线性化后,电击转化整合入Pichia PastorisX-33酵母菌,经高浓度ZeocinTM筛选、表型鉴定、诱导表达及表达产物的鉴定,得到高效表达vp2基因的酵母工程菌X-33/pPICZα-A-VP2.工程菌72h培养上清的SDS-PAGE电泳与免疫印迹结果显示,vp2基因表达产物大小约为55 kDa,比预期的41kDa大.凝胶薄层扫描结合Bradford蛋白质总含量测定结果表明,表达产物占工程菌培养上清总蛋白的28%,表达量可达23 mg/L.间接ELISA结果表明重组表达产物能够有效地区分法氏囊病病毒标准阳性与阴性血清.  相似文献   

17.
【目的】构建传染性法氏囊病毒VP2蛋白展示禽流感M2e抗原表位的重组蛋白,研发预防H5或H9亚型禽流感和传染性法氏囊的基因工程疫苗。【方法】根据现有禽流感疫苗株M2e的氨基端12个氨基酸多肽序列(nM2e)序列,结合GenBank中H5和H9亚型禽流感病毒nM2e的比对结果,确定nM2e序列。用融合PCR分别将1拷贝H5或H9的nM2e序列插入IBD B87株VP2基因的PBC区,获得VP2BCnM2e重组基因。将重组基因克隆至杆状病毒表达系统,转染Sf9细胞进行表达。经间接免疫荧光和Western blotting检测Sf9细胞表达重组基因后,扩繁重组病毒,制备疫苗,间隔4周对非免鸡作2次重复免疫,用间接ELISA和鸡胚成纤维细胞中的病毒血清中和试验检测血清中VP2和nM2e的抗体效价。【结果】成功构建含H5或H9 nM2e的VP2BCnM2e重组基因,该重组基因在Sf9细胞中得到表达。经免疫鸡,两重组蛋白均能激发针对VP2和nM2e的抗体,VP2BCnM2eH5组抗体效价高于VP2BCnM2eH9组。【结论】两重组蛋白均具有免疫原性,VP2BCnM2eH5免疫原性更佳。  相似文献   

18.
19.
State-of-the-art monoclonal antibody (mAb) discovery methods that utilize surface display techniques in prokaryotic and eukaryotic cells require multiple steps of reformatting and switching of hosts to transition from display to expression. This results in a separation between antibody affinity maturation and full-length mAb production platforms. Here, we report for the first time, a method in Glyco-engineered Pichia pastoris that enables simultaneous surface display and secretion of full-length mAb molecules with human-like N-glycans using the same yeast cell. This paradigm takes advantage of homo-dimerization of the Fc portion of an IgG molecule to a surface-anchored "bait" Fc, which results in targeting functional “half” IgGs to the cell wall of Pichia pastoris without interfering with the secretion of full length mAb. We show the utility of this method in isolating high affinity, well-expressed anti-PCSK9 leads from a designed library that was created by mating yeasts containing either light chain or heavy chain IgG libraries. Coupled with Glyco-engineered Pichia pastoris , this method provides a powerful tool for the discovery and production of therapeutic human mAbs in the same host thus improving drug developability and potentially shortening the discovery time cycle.  相似文献   

20.
Marek's disease herpesvirus is a vaccine vector of great promise for chickens; however, complete protection against foreign infectious diseases has not been achieved. In this study, two herpesvirus of turkey recombinants (rHVTs) expressing large amounts of infectious bursal disease virus (IBDV) VP2 antigen under the control of a human cytomegalovirus (CMV) promoter or CMV/beta-actin chimera promoter (Pec promoter) (rHVT-cmvVP2 and rHVT-pecVP2) were constructed. rHVT-pecVP2, which expressed the VP2 antigen approximately four times more than did rHVT-cmvVP2 in vitro, induced complete protection against a lethal IBDV challenge in chickens, whereas rHVT-cmvVP2 induced 58% protection. All of the chickens vaccinated with rHVT-pecVP2 had a protective level of antibodies to the VP2 antigen at the time of challenge, whereas only 42 and 67% of chickens vaccinated with rHVT-cmvVP2 or the conventional live IBDV vaccine, respectively, had the antibodies. The antibody level of chickens vaccinated with rHVT-pecVP2 increased for 16 weeks, and the peak antibody level persisted throughout the experiment. The serum antibody titer at 30 weeks of age was about 20 or 65 times higher than that of chickens vaccinated with rHVT-cmvVP2 or the conventional live vaccine, respectively. rHVT-pecVP2, isolated consistently for 30 weeks from the vaccinated chickens, expressed the VP2 antigen after cultivation, and neither nucleotide mutations nor deletion in the VP2 gene was found. These results demonstrate that the amount of VP2 antigen expressed in the HVT vector was correlated with the vaccine efficacy against lethal IBDV challenge, and complete protective immunity that is likely to persist for the life of the chickens was induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号