首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundIron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.MethodsHerein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.ResultsIn the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.Conclusions and general significanceAscorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.  相似文献   

2.
The iron chelating agent Dp44mT (di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone) and the clinically approved cardioprotective agent dexrazoxane (ICRF-187) were compared for their ability to protect neonatal rat cardiac myocytes from doxorubicin-induced damage. Doxorubicin is thought to induce oxidative stress on the heart muscle through iron-mediated oxygen radical damage. While dexrazoxane was able to protect myocytes from doxorubicin-induced lactate dehydrogenase release, in contrast Dp44mT synergistically increased doxorubicin-induced damage. This occurred in spite of the fact that Dp44mT quickly and efficiently removed iron(III) from its complex with doxorubicin and that Dp44mT also rapidly entered myocytes and displaced iron from a fluorescence-quenched trapped intracellular iron-calcein complex. Electron paramagnetic resonance spin trapping was used to show that iron complexes of Dp44mT were not able to generate hydroxyl radicals, suggesting that its cytotoxicity was not due to reactive oxygen species formation. In conclusion Dp44mT is unlikely to be useful as an anthracycline cardioprotective agent.  相似文献   

3.
Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2′,7′-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.  相似文献   

4.
5.
Upon activation, the 5′-adenosine monophosphate-activated protein kinase (AMPK) increases catabolism, while inhibiting anabolism. The anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), activates AMPK in multiple tumor cell-types (Biochim. Biophys Acta 2016;1863:2916–2933). This acts as an initial cell “rescue response” after iron-depletion mediated by Dp44mT. Considering Dp44mT-mediated AMPK activation, the role of AMPK on Dp44mT cytotoxicity was examined. Dp44mT increased the p-AMPK/AMPK ratio in multiple tumor cell-types over short (24 h) and longer (72 h) incubations. Notably, Dp44mT was more effective in inhibiting tumor cell proliferation after AMPK silencing, potentially due to the loss of AMPK-mediated metabolic plasticity that protects cells against Dp44mT cytotoxicity. The silencing of AMPK-increased cellular cholesterol and stabilized lysosomes against Dp44mT-mediated lysosomal membrane permeabilization. This was substantiated by studies demonstrating that the cholesterol-depleting agent, methyl-β-cyclodextrin (MβCD), restores Dp44mT-mediated lysosomal membrane permeabilization in AMPK silenced cells. The increased levels of cholesterol after AMPK silencing were independent of the ability of AMPK to inhibit the rate-limiting step of cholesterol synthesis via the inactivating phosphorylation of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) at Ser872. In fact, Dp44mT did not increase phosphorylation of HMGCR at (Ser872), but decreased total HMGCR expression similarly in both the presence or absence of AMPK silencing. Dp44mT was demonstrated to increase autophagic initiation after AMPK silencing via an AMPK- and Beclin-1-independent mechanism. Further, there was increased cleaved caspase 3 and cleaved PARP after incubation of AMPK silenced cells with Dp44mT. Overall, AMPK silencing promotes Dp44mT anti-proliferative activity, suggesting a role for AMPK in rescuing its cytotoxicity by inhibiting autophagy and also apoptosis.  相似文献   

6.
The role of signaling pathways in the regulation of cellular iron metabolism is becoming increasingly recognized. Iron chelation is used for the treatment of iron overload but also as a potential strategy for cancer therapy, because iron depletion results in cell cycle arrest and apoptosis. This study examined potential signaling pathways affected by iron depletion induced by desferrioxamine (DFO) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Both chelators affected multiple molecules in the mitogen-activated protein kinase (MAPK) pathway, including a number of dual specificity phosphatases that directly de-phosphorylate MAPKs. Examination of the phosphorylation of major MAPKs revealed that DFO and Dp44mT markedly increased phosphorylation of stress-activated protein kinases, JNK and p38, without significantly affecting the extracellular signal-regulated kinase (ERK). Redox-inactive DFO-iron complexes did not affect phosphorylation of JNK or p38, whereas the redox-active Dp44mT-iron complex significantly increased the phosphorylation of these kinases similarly to Dp44mT alone. Iron or N-acetylcysteine supplementation reversed Dp44mT-induced up-regulation of phospho-JNK, but only iron was able to reverse the effect of DFO on JNK. Both iron chelators significantly reduced ASK1-thioredoxin complex formation, resulting in the increased phosphorylation of ASK1, which activates the JNK and p38 pathways. Thus, dissociation of ASK1 could serve as an important signal for the phosphorylation of JNK and p38 activation observed after iron chelation. Phosphorylation of JNK and p38 likely play an important role in mediating the cell cycle arrest and apoptosis induced by iron depletion.  相似文献   

7.
Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.  相似文献   

8.
9.
Thiosemicarbazones such as Triapine (Tp) and Dp44mT are tridentate iron (Fe) chelators that have well-documented antineoplastic activity. Although Fe–thiosemicarbazones can undergo redox cycling to generate reactive species that may have important roles in their cytotoxicity, there is only limited insight into specific cellular agents that can rapidly reduce Fe(III)–thiosemicarbazones and thereby promote their redox activity. Here we report that thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) have this activity and that there is considerable specificity to the interactions between specific redox centers in these enzymes and various Fe(III) complexes. Site-directed variants of TrxR1 demonstrate that the selenocysteine (Sec) of the enzyme is not required, whereas the C59 residue and the flavin have important roles. Although TrxR1 and GR have analogous C59/flavin motifs, TrxR is considerably faster than GR. For both enzymes, Fe(III)(Tp)2 is reduced faster than Fe(III)(Dp44mT)2. This reduction promotes redox cycling and the generation of hydroxyl radical (HO) in a peroxide-dependent manner, even with low-micromolar levels of Fe(Tp)2. TrxR also reduces Fe(III)–bleomycin and this activity is Sec-dependent. TrxR cannot reduce Fe(III)–EDTA at significant rates. Our findings are the first to demonstrate pro-oxidant reductive activation of Fe(III)-based antitumor thiosemicarbazones by interactions with specific enzyme species. The marked elevation of TrxR1 in many tumors could contribute to the selective tumor toxicity of these drugs by enhancing the redox activation of Fe(III)–thiosemicarbazones and the generation of reactive oxygen species such as HO.  相似文献   

10.
N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.  相似文献   

11.
A major barrier to successful pancreatic cancer (PC) treatment is the surrounding stroma, which secretes growth factors/cytokines that promote PC progression. Wnt and tenascin C (TnC) are key ligands secreted by stromal pancreatic stellate cells (PSCs) that then act on PC cells in a paracrine manner to activate the oncogenic β-catenin and YAP/TAZ signaling pathways. Therefore, therapies targeting oncogenic Wnt/TnC cross talk between PC cells and PSCs constitute a promising new therapeutic approach for PC treatment. The metastasis suppressor N-myc downstream-regulated gene-1 (NDRG1) inhibits tumor progression and metastasis in numerous cancers, including PC. We demonstrate herein that targeting NDRG1 using the clinically trialed anticancer agent di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibited Wnt/TnC-mediated interactions between PC cells and the surrounding PSCs. Mechanistically, NDRG1 and DpC markedly inhibit secretion of Wnt3a and TnC by PSCs, while also attenuating Wnt/β-catenin and YAP/TAZ activation and downstream signaling in PC cells. This antioncogenic activity was mediated by direct inhibition of β-catenin and YAP/TAZ nuclear localization and by increasing the Wnt inhibitor, DKK1. Expression of NDRG1 also inhibited transforming growth factor (TGF)-β secretion by PC cells, a key mechanism by which PC cells activate PSCs. Using an in vivo orthotopic PC mouse model, we show DpC downregulated β-catenin, TnC, and YAP/TAZ, while potently increasing NDRG1 expression in PC tumors. We conclude that NDRG1 and DpC inhibit Wnt/TnC-mediated interactions between PC cells and PSCs. These results further illuminate the antioncogenic mechanism of NDRG1 and the potential of targeting this metastasis suppressor to overcome the oncogenic effects of the PC-PSC interaction.  相似文献   

12.
In an attempt to develop potent anticancer agents, a series of 4-arylideneamino/cycloalkylidineamino-1, 2-naphthoquinone thiosemicarbazones were synthesized and characterized using FT-IR, 1H NMR, 13C NMR spectroscopy and elemental analysis. The compounds were screened for antiproliferative activity against three human cancer cell lines (Hep-G2, MG-63 and MCF-7) using the MTT assay. Significant anticancer activity was observed for several members of the series. The compounds 4-(3, 4, 5-trimethoxybenzylidene amino) 1, 2-naphthoquinone-2-thiosemicarbazone (TS10) and 4-(4-hydroxy-3-methoxy benzylideneamino) 1, 2-naphthoquinone-2-thiosemicarbazone (TS13) were active cytotoxic agents in all three cancer cell lines, with IC50 values in the range of 3.5–6.4 µM. Further evaluation of some of these potent cytotoxic compounds demonstrated their good safety profile in a normal cell line (MCF-12A). Docking experiments showed a good correlation between the predicted glide scores and the IC50 values of these compounds. In silico ADME studies revealed that these compounds can be used for second generation development.  相似文献   

13.
The epithelial-mesenchymal transition (EMT) is a key step for cancer cell migration, invasion, and metastasis. Transforming growth factor-β (TGF-β) regulates the EMT and the metastasis suppressor gene, N-myc downstream-regulated gene-1 (NDRG1), could play a role in regulating the TGF-β pathway. NDRG1 expression is markedly increased after chelator-mediated iron depletion via hypoxia-inducible factor 1α-dependent and independent pathways (Le, N. T. and Richardson, D. R. (2004) Blood 104, 2967-2975). Moreover, novel iron chelators show marked and selective anti-tumor activity and are a potential new class of anti-metabolites. Considering this, the current study investigated the relationship between NDRG1 and the EMT to examine if iron chelators can inhibit the EMT via NDRG1 up-regulation. We demonstrated that TGF-β induces the EMT in HT29 and DU145 cells. Further, the chelators, desferrioxamine (DFO) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), inhibited the TGF-β-induced EMT by maintaining E-cadherin and β-catenin, at the cell membrane. We then established stable clones with NDRG1 overexpression and knock-down in HT29 and DU145 cells. These data showed that NDRG1 overexpression maintained membrane E-cadherin and β-catenin and inhibited TGF-β-stimulated cell migration and invasion. Conversely, NDRG1 knock-down caused morphological changes from an epithelial- to fibroblastic-like phenotype and also increased migration and invasion, demonstrating NDRG1 knockdown induced the EMT and enhanced TGF-β effects. We also investigated the mechanisms involved and showed the TGF-β/SMAD and Wnt pathways were implicated in NDRG1 regulation of E-cadherin and β-catenin expression and translocation. This study demonstrates that chelators inhibit the TGF-β-induced EMT via a process consistent with NDRG1 up-regulation and elucidates the mechanism of their activity.  相似文献   

14.
The 2-benzoylpyridine thiosemicarbazone (BpT) chelators demonstrate potent anti-proliferative effects against tumor cells. To understand their structure–activity relationships, BpT analogues incorporating electron-donating substituents on the pyridine and phenyl rings of the BpT scaffold were designed and represent the first attempts to modify the pyridine ring of these thiosemicarbazones. Eight analogues showed significantly (p <0.001) greater anti-proliferative activity than the ‘gold-standard’ chelator, desferrioxamine. Structure–activity analysis revealed that mono- or di-methoxy substitution at the phenyl ring resulted in lower anti-proliferative activity, while methoxy substitutions at the phenyl ring enhanced iron chelation efficacy. These important findings facilitate the design of thiosemicarbazones with greater anti-tumor activity.  相似文献   

15.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   

16.
Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.  相似文献   

17.
Various substituted 1-arylmethyl-2,3-dioxo-2,3-dihydroindole thiosemicarbazones 3a-h, 1-benzyl-2,3-dioxo-2,3-dihydroindole N4-aryl thiosemicarbazones 4a-i and 1-benzyl-2,3-dioxy-2,3-dihydroindole N4-cyclohexylthiocarbazone 5 were synthesized. All of these compounds were evaluated against human Molt 4/C8 and CEM T-lymphocytes as well as murine L1210 leukemia cells. Nearly 40% of these compounds possess low micromolar IC50 values and some are either more potent than, or equipotent with, melphalan. Various correlations between the structures of these compounds and cytotoxic potencies were obtained which included the use of QSAR and molecular modeling techniques. Representative compounds displayed anticonvulsant properties in rats and were well tolerated by these animals. The encouraging biodata noted affords adequate rationale for outlining guidelines for further development of these molecular scaffolds.  相似文献   

18.
Synthetic thiosemicarbazones and semicarbazones were evaluated for their Trypanosoma cruzi trypomastigotes obtained from LLC-MK2 cell cultures. In general, thiosemicarbazone derivatives were most effective and among them the 4-N-(2′-methoxy styryl)-thiosemicarbazone was chosen, to compare the in vitro effect against amastigotes of T. cruzi lodged in mouse peritoneal and human macrophages. A potent trypanocidal effect was observed that was more pronounced against parasites internalized in human macrophages. A potential target for this compound was also evaluated by measuring the nitric oxide synthase activity through NADPH consumption. A significant decrease in enzyme activity was observed. In contrast to the cytotoxic effect observed with benznidazole, no macrophage toxicity was observed for any of the compounds, indicating that their activity was specific for the parasite forms investigated.  相似文献   

19.
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important “Achilles' heel” for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a “double punch” mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine® and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial–mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the “expanding horizons” for iron chelators in selectively targeting cancer cells.  相似文献   

20.
Aplog-1 is a simplified analog of debromoaplysiatoxin (DAT) with potent tumor-promoting and proinflammatory activities. Aplog-1 and DAT exhibited anti-proliferative activities against several human cancer cell lines, whereas aplog-1 did not have tumor-promoting nor proinflammatory activities. We have recently found 10-methyl-aplog-1 (1) to have strong anti-proliferative activity compared with aplog-1. To further investigate the structural factors involved in the tumor-promoting, proinflammatory, and anti-proliferative activities, two dimethyl derivatives of aplog-1 (2, 3) were synthesized, where two methyl groups were installed at positions 4 and 10 or 10 and 12. 10,12-Dimethyl-aplog-1 (2) had stronger inhibitory effects on the growth of several human cancer cell lines than 1 and DAT, but exhibited no tumor-promoting and proinflammatory activities. In contrast, 4,10-dimethyl-aplog-1 (3) displayed weak tumor-promoting and proinflammatory activities along with anti-proliferative activity similar to that of 1 and DAT. Compound 2 would be the optimized seed for anticancer drugs among the simplified analogs of DAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号