首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The alkaloid derivative vinpocetine (14-ethoxycarbonyl-(3,16-ethyl)-14,15-eburnamine; Cavinton) has a well known beneficial effect on brain function in hypoxic and ischemic conditions. While it increases CNS blood flow and improves cellular metabolism, relatively little is known about vinpocetine's underlying molecular mechanisms on the single cell level. Since apoptotic and necrotic cell damage is always preceded by an increase in [Ca2+]i, this study investigated the effect of vinpocetine on [Ca2+]i increases in acute brain slices. Sodium influx is an early event in the biochemical cascade that takes place during ischemia. The alkaloid veratridine can activate this Na+ influx, causing depolarization and increasing [Ca2+]i in the cells. Therefore, it can be used to simulate an ischemic attack in brain cells. Using a cooled CCD camera-based ratio imaging system and cell loading with fura 2/AM, the effect of vinpocetine on [Ca2+]i changes in single pyramidal neurons in the vulnerable CA1 region of rat hippocampal slices was investigated. Preperfusion and continuous administration of vinpocetine (10 M) significantly inhibited the elevation in [Ca2+]i induced by veratridine (10 M). When the drug was administered after veratridine, it could accelerate the recovery of cellular calcium levels. Piracetam, another nootropic used in clinical practice, could attenuate the elevation of [Ca2+]i only at a high, 1 mM, concentration. We have concluded that vinpocetine, at a pharmacologically relevant concentration, can decrease pathologically high [Ca2+]i levels in individual rat hippocampal CA1 pyramidal neurons; this effect might contribute to the neuroprotective property of the drug.  相似文献   

3.
1. Schizophrenia and bipolar disorder are neurodevelopmental disorders with significant genetic vulnerabilities. Several trophic genes and/or proteins have been implicated in the causation for both disorders. 2. We hypothesized that these genes and/or proteins may impact neuronal growth in both disorders. 3. Hippocampal tissue sections from CA1 area of schizophrenic, bipolar, depressed, and controls subjects, matched for age, sex, PMI, drug exposure, and brain pH were prepared for cell size determination using the Stanley Medical Research Foundation postmortem brain collection. 4. Quantification of hippocampal CA1 pyramidal neuron size showed a significant 12% reduction in cell size (p < 0.05) in bipolar subjects vs. controls. There were nonsignificant trends for reduction in cell size in both schizophrenic and depressed subjects vs. controls. 5. These results indicate for the first time that pyramidal cell atrophy is present in hippocampus of subjects with bipolar disorder.  相似文献   

4.

Background

Hippocampal CA1 pyramidal neurons receive two excitatory glutamatergic synaptic inputs: their most distal dendritic regions in the stratum lacunosum-moleculare (SLM) are innervated by the perforant path (PP), originating from layer III of the entorhinal cortex, while their more proximal regions of the apical dendrites in the stratum radiatum (SR) are innervated by the Schaffer-collaterals (SC), originating from hippocampal CA3 neurons. Endocannabinoids (eCBs) are naturally occurring mediators capable of modulating both GABAergic and glutamatergic synaptic transmission and plasticity via the CB1 receptor. Previous work on eCB modulation of excitatory synapses in the CA1 region largely focuses on the SC pathway. However, little information is available on whether and how eCBs modulate glutamatergic synaptic transmission and plasticity at PP synapses.

Methodology/Principal Findings

By employing somatic and dendritic patch-clamp recordings, Ca2+ uncaging, and immunostaining, we demonstrate that there are significant differences in low-frequency stimulation (LFS)- or DHPG-, an agonist of group I metabotropic glutamate receptors (mGluRs), induced long-term depression (LTD) of excitatory synaptic transmission between SC and PP synapses in the same pyramidal neurons. These differences are eliminated by pharmacological inhibition with selective CB1 receptor antagonists or genetic deletion of the CB1 receptor, indicating that these differences likely result from differential modulation via a CB1 receptor-dependent mechanism. We also revealed that depolarization-induced suppression of excitation (DSE), a form of short-term synaptic plasticity, and photolysis of caged Ca2+-induced suppression of Excitatory postsynaptic currents (EPSCs) were less at the PP than that at the SC. In addition, application of WIN55212 (WIN) induced a more pronounced inhibition of EPSCs at the SC when compared to that at the PP.

Conclusions/Significance

Our results suggest that CB1 dependent LTD and DSE are differentially expressed at the PP versus SC synapses in the same neurons, which may have an impact on synaptic scaling, integration and plasticity of hippocampal CA1 pyramidal neurons.  相似文献   

5.
采用膜片钳内面向外式记录技术,研究急性分离成年大鼠海马CAl区锥体神经元外向整流氯离子通道的氧化还原调控。发现细胞内侧给予氧化剂DTNB(5,5'-dithiobis-2-nitrobenzoic acid),可显著减弱氯通道的活动,IC50值为(28.05±2.42)μmol/L;还原剂DTT(dithiothreitol)对氯通道没有明显影响,但可逆转DTNB引起的抑制效应。说明DTNB不改变通道电导,其引起的通道活动减弱是由氯通道关闭时间延长而开放时间缩短所致。研究还发现,另一对氧化型和还原型谷胱甘肽具有与DTNB和DTT同样的效应。本研究结果显示,成年大鼠海马CA1区锥体神经元外向整流氯通道可以被细胞内氧化还原剂所调控。  相似文献   

6.
Spontaneous, single channel, chloride currents were recorded in 48% of cell-attached patches on neurones in the CA1 region of rat hippocampal slices. In some patches, there was more than 1 channel active. They showed outward rectification: both channel conductance and open probability were greater at depolarized than at hyperpolarized potentials. Channels activated by γ-aminobutyric acid (GABA) in silent patches on the same neurones had similar conductance and outward rectification. The spontaneous currents were inhibited by bicuculline and potentiated by diazepam. It was concluded that the spontaneously opening channels were constitutively active, nonsynaptic GABAA channels. Such spontaneously opening GABAA channels may provide a tonic inhibitory mechanism in these cells and perhaps in other cells that have GABAA receptors although not having a GABAA synaptic input. They may also be a target for clinically useful drugs such as the benzodiazepines. Received: 31 August 1999/Revised: 2 November 1999  相似文献   

7.
Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular sodium signals induced by focal receptor activation in intact brain tissue.  相似文献   

8.
贺立新  卢大华  蔡海荣 《生物磁学》2011,(17):3255-3257,3269
目的:探究人体海马CA1区神经元锥体细胞胞体发育的过程。方法:取19孕周(19GW)、20GW、26GW、35GW、38GW水囊引产胎儿和8岁(8Y)死亡儿童各1例,所有标本来源符合相关法律法规和伦理要求,采用Golgi染色技术,借助配备有"Neurolu-cida"软件的共聚焦显微镜观察CA1区锥体细胞胞体,分析细胞体的长度和面积。结果:19GW和20GW细胞体形态尚不明显。26Gw、35Gw、38Gw、8Y海马CA1区锥体神经元胞体长度分别为56.5±2.5(μm)、80.8±8.5(μm)、85.9±12.2(μm)、91.3±9.6(μm);胞体面积分别为254.5±13.7(μm^2)、362.5±15.5(μm^2)、380.5±22.8(μm^2)、460.8±25.7(μm^2)。26GW锥体细胞胞体长度和面积与35GW、38GW、8Y相比差异明显(P〈0.05);8岁胞体长度和面积与38GW相比有小幅度增大;细胞形态学:26GW、35GW、38GW锥体细胞胞体切面呈椭圆形或三角形,随胎龄增大,胞体长度和面积逐渐增长增大,特别是细胞基底部增宽。胞体形态由椭圆形逐渐转换为三角形;细胞底部的基树突数量也逐渐增加,到38GW时可以达到4—7个,8Y锥体细胞胞体在切面上基本上都呈三角形,细胞长度和面积与38GW相比稍微增大,相对趋于稳定。结论:人体在发育过程中,锥体细胞长度呈逐渐增长、面积呈逐渐增大趋势,26GW与35GW之间变化最大,38GW与8Y胞体面积差异不明显,整个变化趋势逐渐变慢并趋于稳定。  相似文献   

9.
目的:探究人体海马CA1区神经元锥体细胞胞体发育的过程。方法:取19孕周(19GW)、20GW、26GW、35GW、38GW水囊引产胎儿和8岁(8Y)死亡儿童各1例,所有标本来源符合相关法律法规和伦理要求,采用Golgi染色技术,借助配备有"Neurolu-cida"软件的共聚焦显微镜观察CA1区锥体细胞胞体,分析细胞体的长度和面积。结果:19GW和20GW细胞体形态尚不明显,26GW、35GW、38GW、8Y海马CA1区锥体神经元胞体长度分别为56.5±2.5(μm)、80.8±8.5(μm)、85.9±12.2(μm)、91.3±9.6(μm);胞体面积分别为254.5±13.7(μm2)、362.5±15.5(μm2)、380.5±22.8(μm2)、460.8±25.7(μm2)。26GW锥体细胞胞体长度和面积与35GW、38GW、8Y相比差异明显(P<0.05);8岁胞体长度和面积与38GW相比有小幅度增大;细胞形态学:26GW、35GW、38GW锥体细胞胞体切面呈椭圆形或三角形,随胎龄增大,胞体长度和面积逐渐增长增大,特别是细胞基底部增宽,胞体形态由椭圆形逐渐转换为三角形;细胞底部的基树突数量也逐渐增加,到38GW时可以达到4-7个,8Y锥体细胞胞体在切面上基本上都呈三角形,细胞长度和面积与38GW相比稍微增大,相对趋于稳定。结论:人体在发育过程中,锥体细胞长度呈逐渐增长、面积呈逐渐增大趋势,26GW与35GW之间变化最大,38GW与8Y胞体面积差异不明显,整个变化趋势逐渐变慢并趋于稳定。  相似文献   

10.
Dendritic ion channels play a critical role in shaping synaptic input and are fundamentally important for synaptic integration and plasticity. In the hippocampal region CA1, somato-dendritic gradients of AMPA receptors and the hyperpolarization-activated cation conductance (Ih) counteract the effects of dendritic filtering on the amplitude, time-course, and temporal integration of distal Schaffer collateral (SC) synaptic inputs within stratum radiatum (SR). While ion channel gradients in CA1 distal apical trunk dendrites within SR have been well characterized, little is known about the patterns of ion channel expression in the distal apical tuft dendrites within stratum lacunosum moleculare (SLM) that receive distinct input from the entorhinal cortex via perforant path (PP) axons. Here, we measured local ion channels densities within these distal apical tuft dendrites to determine if the somato-dendritic gradients of Ih and AMPA receptors extend into distal tuft dendrites. We also determined the densities of voltage-gated sodium channels and NMDA receptors. We found that the densities of AMPA receptors, Ih, and voltage-gated sodium channels are similar in tuft dendrites in SLM when compared with distal apical dendrites in SR, while the ratio of NMDA receptors to AMPA receptors increases in tuft dendrites relative to distal apical dendrites within SR. These data indicate that the somato-dendritic gradients of Ih and AMPA receptors in apical dendrites do not extend into the distal tuft, and the relative densities of voltage-gated sodium channels and NMDA receptors are poised to support nonlinear integration of correlated SC and PP input.  相似文献   

11.
C Müller  H Beck  D Coulter  S Remy 《Neuron》2012,75(5):851-864
The transformation of dendritic excitatory synaptic inputs to axonal action potential output is the fundamental computation performed by all principal neurons. We show that in the hippocampus this transformation is potently controlled by recurrent inhibitory microcircuits. However, excitatory input on highly excitable dendritic branches could resist inhibitory?control by generating strong dendritic spikes and?trigger precisely timed action potential output. Furthermore, we show that inhibition-sensitive branches can be transformed into inhibition-resistant, strongly spiking branches by intrinsic plasticity of branch excitability. In addition, we demonstrate that the inhibitory control of spatially defined dendritic excitation is strongly regulated by network activity patterns. Our findings suggest that dendritic spikes may serve to transform correlated branch input into reliable and temporally precise output even in the presence of inhibition.  相似文献   

12.
GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABAA-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABAA receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABAA-mediated excitation is complex. Experimentally it is difficult to determine the ionic mechanisms of depolarizing current since potassium transients are challenging to isolate pharmacologically and much GABA signaling occurs in small, difficult to measure, dendritic compartments. To address this problem and determine plausible ionic mechanisms of GABAA-mediated excitation, we built a detailed biophysically realistic model of the CA1 pyramidal neuron that includes processes critical for ion homeostasis. Our results suggest that in dendritic compartments, but not in the somatic compartments, chloride buildup is sufficient to cause dramatic depolarization of the GABAA reversal potential and dominating bicarbonate currents that provide a substantial current source to drive whole-cell depolarization. The model simulations predict that extracellular K+ transients can augment GABAA-mediated excitation, but not cause it. Our model also suggests the potential for GABAA-mediated excitation to promote network synchrony depending on interneuron synapse location - excitatory positive-feedback can occur when interneurons synapse onto distal dendritic compartments, while interneurons projecting to the perisomatic region will cause inhibition.  相似文献   

13.
The distribution of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA in the rat brain is reported using oligonucleotides based on a cDNA clone sequence that encodes rat brain InsP3 3-kinase and the in situ hybridization technique. Moderate levels were found in CA2-4 pyramidal neurons, in the cortex, and in the striatum. The cerebellar granule cells, thalamus, hypothalamus, brainstem, spinal cord, and white matter tracts were almost negative. The levels of InsP3 3-kinase mRNA were highest in the hippocampal CA1 pyramidal neurons, granule cells of the dentate gyrus, and cerebellar Purkinje cells. These results contrast with the lower concentration of the InsP3 receptor already reported in the hippocampus versus the Purkinje cells and suggest a special role for inositol 1,3,4,5-tetrakisphosphate in Ammon's horn.  相似文献   

14.
Neurons might interact via electric fields and this notion has been referred to as ephaptic interaction. It has been shown that various types of ion channels are distributed along the dendrites and are capable of supporting generation of dendritic spikes. We hypothesized that generation of dendritic spikes play important roles in the ephaptic interactions either by amplifying the impact of electric fields or by providing current source to generate electric fields. To test if dendritic activities can be modulated by electric fields, we developed a method to monitor local Ca-transients in the dendrites of a neuronal population in acute rat hippocampal slices by applying spinning-disk confocal microscopy and multi-cell dye loading technique. In a condition in which the dendrites of CA1 pyramidal neurons show spontaneous Ca-transients due to added 50 μM 4-aminopyridine to the bathing medium and adjusted extracellular potassium concentration, we examined the impact of sinusoidal electric fields on the Ca-transients. We have found that spontaneously occurring fast-Ca-transients in the tufts of the apical dendrites of CA1 pyramidal neurons can be blocked by applying 1 μM tetrodotoxin, and that the timing of the transients become entrained to sub-threshold 1-4 Hz electric fields with an intensity as weak as 0.84 mV/mm applied parallel to the somato-dendritic axis of the neurons. The extent of entrainment increases with intensity below 5 mV/mm, but does not increase further over the range of 5-20 mV/mm. These results suggest that population of pyramidal cells might be able to detect electric fields with biologically relevant intensity by modulating the timing of dendritic spikes.  相似文献   

15.
16.
Aims The present study was undertaken to evaluate possible neuroprotective effect of bradykinin against delayed neuronal death in hippocampal CA1 neurons if applied two days after transient forebrain ischemia in the rat. Methods Transient forebrain ischemia was induced in male Wistar rats by four-vessel occlusion for 8 min. To assess efficacy of bradykinin as a new stressor for delayed postconditioning we used two experimental groups of animals: ischemia 8 min and 3 days of survival, and ischemia 8 min and 3 days of survival with i.p. injection of bradykinin (150 μg/kg) applied 48 h after ischemia. Results We found extensive neuronal degeneration in the CA1 region at day 3 after ischemia/reperfusion. The postischemic neurodegeneration was preceded by increased activity of mitochondrial enzyme MnSOD in cytoplasm, indicating release of MnSOD from mitochondria in the process of delayed neuronal death. Increased cytosolic cytochrome c and subsequently caspase-3 activation are additional signs of neuronal death via the mitochondrial pathway. Bradykinin administration significantly attenuated ischemia-induced neuronal death, and also suppressed the release of MnSOD, and cytochrome c, and prevented caspase-3 activation. Conclusions Bradykinin can be used as an effective stressor able to prevent mitochondrial failure leading to apoptosis-like delayed neuronal death in postischemic rat hippocampus.  相似文献   

17.
Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding.  相似文献   

18.
为了深入研究麻醉药乌拉坦对大鼠海马CA1锥体神经元自发放电的作用及其机制,分析了10 mmol/L乌拉坦对自发放电、电压门控钠通道、电压门控钾通道的作用.从自发放电信号中计算了放电频率、提取了峰峰间隔序列(ISI)并利用样品熵和去趋势波动法对ISI进行了非线性分析.结果表明,乌拉坦不仅抑制了自发放电的频率,而且降低了自发放电ISI序列的复杂度并弱化了其长时程相关性.离子通道研究结果表明,乌拉坦显著地抑制了钠通道电流(INa),对延迟整流钾通道电流(IK)和瞬时外向钾通道电流(IA)虽然也有抑制作用但无统计学意义.由于乌拉坦不影响突触传递,因此它可能通过抑制INa使自发放电的阈值升高而降低放电频率,同时,由于参与的通道数量或活性降低而使得ISI的复杂度下降,长时程相关性弱化.  相似文献   

19.
20.
The active dendritic conductances shape the input-output properties of many principal neurons in different brain regions, and the various ways in which they regulate neuronal excitability need to be investigated to better understand their functional consequences. Using a realistic model of a hippocampal CA1 pyramidal neuron, we show a major role for the hyperpolarization-activated current, Ih, in regulating the spike probability of a neuron when independent synaptic inputs are activated with different degrees of synchronization and at different distances from the soma. The results allowed us to make the experimentally testable prediction that the Ih in these neurons is needed to reduce neuronal excitability selectively for distal unsynchronized, but not for synchronized, inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号