首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
2.
Carbon metabolite feedback regulation of leaf photosynthesis and development   总被引:16,自引:0,他引:16  
Photosynthesis is regulated as a two-way process. Light regulates the expression of genes for photosynthesis and the activity of the gene products (feedforward control). Rate of end-product use down-stream of the Calvin cycle, determined largely by nutrition and temperature, also affects photosynthetic activity and photosynthetic gene expression (feedback control). Whereas feedforward control ensures efficient light use, feedback mechanisms ensure that carbon flow is balanced through the pathways that produce and consume carbon, so that inorganic phosphate is recycled and nitrogen is distributed optimally to different processes to ensure growth and survival. Actual mechanisms are sketchy and complex, but carbon to nitrogen balance rather than carbon status per se is central to understanding carbon metabolite feedback control of photosynthesis. In addition to determining the activity of the metabolic machinery, carbon metabolite feedback mechanisms also regulate photosynthesis at the leaf level through the regulation of leaf development. This review summarizes the current sketchy, but growing, knowledge of the mechanisms through which carbon metabolite feedback mechanisms regulate leaf photosynthesis.  相似文献   

3.
Endothelium forms a physical barrier that separates blood from tissue. Communication between blood and tissue occurs through the delivery of molecules and circulating substances across the endothelial barrier by directed transport either through or between cells. Inflammation promotes macromolecular transport by decreasing cell-cell and cell-matrix adhesion and increasing centripetally directed tension, resulting in the formation of intercellular gaps. Inflammation may also increase the selected transport of macromolecules through cells. Significant progress has been made in understanding the molecular and cellular mechanisms that account for constitutive endothelial cell barrier function and also the mechanisms activated during inflammation that reduce barrier function. Current concepts of mechanisms regulating endothelial cell barrier function were presented in a symposium at the 2000 Experimental Biology Conference and are reviewed here.  相似文献   

4.
p53转录非依赖活性介导细胞凋亡   总被引:2,自引:0,他引:2  
钱呈睿  葛海良  王颖 《生命科学》2007,19(3):326-329
p53主要通过两条途径诱导细胞凋亡:p53作为转录因子,促进细胞凋亡的靶基因的表达上调,如PUMA、NOXA、PIDD、p53AIP1、COP1等,并通过这些蛋白参与内源和外源凋亡途径;另一方面,胞浆中的p53能转位到线粒体,激活内源性的线粒体途径,促进凋亡。后者已成为研究p53促凋亡机制的热点。本文就p53对转录非依赖活性诱导细胞凋亡途径的研究进展作一概述。  相似文献   

5.
Families of the Campanulales-Asterales-complex are characterized by special mechanisms for secondary pollen presentation: pump mechanism, brushing mechanism, deposition mechanism, cup mechanism and combination of cup mechanism with brushing mechanism. These different mechanisms are based on three successive events: elongation of the filaments, opening of the anthers, elongation of the style. The diversity of the mechanisms arises through different auxiliary structures such as an indusium, hairs or an anther tube, and the relative rate and time of filament and style growth. An advantage of secondary pollen presentation lies in the prolongation of the male phase of anthesis through portioned pollen release. A probable phylogeny of the different mechanisms of secondary pollen presentation is proposed (Fig. 7).  相似文献   

6.
A large fraction of genes in the mammalian genome is repressed in every cell throughout development. Here, we propose that this long-term silencing is carried out by distinct molecular mechanisms that operate in a global manner and, once established, can be maintained autonomously through DNA replication. Both individually and in combination these mechanisms bring about repression, mainly by lowering gene accessibility through closed chromatin structures.  相似文献   

7.
This review focuses on recent evidence that identifies potential extracellular and cellular mechanisms that may be involved in the tolerance of ectomycorrhizal fungi to excess metals in their environment. It appears likely that mechanisms described in the nonmycorrhizal fungal species are used in the ectomycorrhizal fungi as well. These include mechanisms that reduce uptake of metals into the cytosol by extracellular chelation through extruded ligands and binding onto cell-wall components. Intracellular chelation of metals in the cytosol by a range of ligands (glutathione, metallothioneins), or increased efflux from the cytosol out of the cell or into sequestering compartments are also key mechanisms conferring tolerance. Free-radical scavenging capacities through the activity of superoxide dismutase or production of glutathione add another line of defence against the toxic effect of metals.  相似文献   

8.
Richter J  Powles SB 《Plant physiology》1993,102(3):1037-1041
Herbicide resistance can occur either through target-site insensitivity or by nontarget site-based mechanisms. Two herbicide-resistant biotypes of Lolium rigidum Gaud., one resistant to acetolactate synthase (ALS)-inhibiting herbicides (biotype WLR1) and the other resistant to acetyl CoA carboxylase (ACCase)-inhibiting herbicides (biotype WLR96) through target-site insensitivity at the whole plant and enzymic levels, were found to express this resistance in the pollen. Pollen produced by resistant biotypes grew uninhibited when challenged with herbicide, whereas that from a susceptible biotype was inhibited. A third biotype, SLR31, resistant to ACCase-inhibiting and certain ALS-inhibiting herbicides at the whole plant level through nontarget site-based mechanisms, did not exhibit this expression in the pollen. The technique described may form the basis for a rapid screen for certain nuclear-encoded, target site-based herbicide-resistance mechanisms.  相似文献   

9.
10.
Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss.  相似文献   

11.
Mechanisms of glutamate release from astrocytes   总被引:6,自引:1,他引:5  
Astrocytes can release the excitatory transmitter glutamate which is capable of modulating activity in nearby neurons. This astrocytic glutamate release can occur through six known mechanisms: (i) reversal of uptake by glutamate transporters (ii) anion channel opening induced by cell swelling, (iii) Ca2+-dependent exocytosis, (iv) glutamate exchange via the cystine-glutamate antiporter, (v) release through ionotropic purinergic receptors and (vi) functional unpaired connexons, "hemichannels", on the cell surface. Although these various pathways have been defined, it is not clear how often and to what extent astrocytes employ different mechanisms. It will be necessary to determine whether the same glutamate release mechanisms that operate under physiological conditions operate during pathological conditions or whether there are specific release mechanisms that operate under particular conditions.  相似文献   

12.
Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. In conclusion: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels are closed by toxicants vary. Thus, accurate assessments of risk posed by toxic agents, and the role of dietary phytochemicals play in preventing or reversing the effects of these agents must take into account the specific mechanisms involved in the cancer process.  相似文献   

13.
Coxsackieviruses are a cause of clinical myocarditis. Both virus replication and host defense mechanisms, including virus-induced autoimmunity, mediate heart injury and cardiac dysfunction. Vgamma4+ cells kill infected cardiocytes and virus-specific CD4+ Th2 cells through Fas-dependent apoptosis and CD1d. The CD4+ Th1 response is necessary for activation of the autoimmune CD8+ T cells, which kill uninfected cardiocytes through perforin-dependent mechanisms.  相似文献   

14.
Cedar pollens cause severe allergic disease throughout the world. We have previously characterized allergenic pollen glycoproteins from mountain cedar (Juniperus ashei) that bind to allergen-specific immunoglobulin E (IgE). In the present report, we investigated an alternative pathway of mast cell activation by mountain cedar pollen extract through IgE-independent mechanisms. We show that mountain cedar pollen directly induces mast cell serotonin and IL-4 release and enhances release induced by IgE cross-linking. Concomitant with mediator release, high levels of intracellular reactive oxygen species (ROS) were generated, and both ROS and serotonin release were inhibited by anti-oxidants. These findings suggest that alternative mechanisms exist whereby pollen exposure enhances allergic inflammatory mediator release through mechanisms that involve ROS. These mechanisms have the potential for enhancing the allergenic potency of pollens.  相似文献   

15.
Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.  相似文献   

16.
17.
A model for membrane transport through alpha-helical protein pores   总被引:3,自引:0,他引:3  
In this communication we explore possible mechanisms by which hydrogen-bonded, knobs-into-holes packed side chains from adjoining α-helical segments could function in proton transport through membranes and mechanisms by which proton transport could be coupled to active transport of other substances.  相似文献   

18.
19.
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.  相似文献   

20.
Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号