首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
报道了褐鳞叶衣属Fuscopannaria和鳞藓衣属Psoroma的5个中国地衣型真菌新记录种:蓝缘褐鳞叶衣F.coerulescens、裂叶褐鳞叶衣F.dissecta、泰国褐鳞叶衣F.siamensis、雅褐鳞叶衣F.venusta和鳞藓衣P.hyp-norum.此二属的区别在于褐鳞叶衣属地衣体无下皮层,子实层半淀...  相似文献   

2.
The catalogue is based on a comprehensive evaluation of 169 published sources. The lichen mycota as currently known from Montenegro includes 681 species (with eight subspecies, nine varieties and one form) of lichenized fungi, 12 species of lichenicolous fungi, and nine non-lichenized fungi traditionally included in lichenological literature.  相似文献   

3.
We investigate the extent by which the estimates of the rate of adaptive molecular evolution obtained by extending the McDonald-Kreitman test are biased if the species, subjected to analysis, diverged recently. We show that estimates can be biased if the nucleotide divergence between the species is low relative to within species variation, and that the magnitude of the bias depends on the rate of adaptive evolution and the distribution of fitness effects of new mutations. Bias appears to be because of three factors: (1) misattribution of polymorphism to divergence; (2) the contribution of ancestral polymorphism to divergence; and (3) different rates of fixation of neutral and advantageous mutations. If there is little adaptive molecular evolution, then slightly deleterious mutations inflate estimates of the rate of adaptive evolution, because these contribute proportionately more to polymorphism than to nucleotide divergence than neutral mutations. However, if there is substantial adaptive evolution, polymorphism contributing to apparent divergence may downwardly bias estimates. We propose a simple method for correcting the different contributions of slightly deleterious and neutral mutations to polymorphism and divergence, and apply it to datasets from several species. We find that estimates of the rate of adaptive molecular evolution from closely related species may be underestimates by ~10% or more. However, after the contribution of polymorphism to divergence is removed, the rate of adaptive evolution may still be overestimated as a consequence of ancestral polymorphism and time for fixation effects. This bias may be substantial if branch lengths are less than 10N (e) generations.  相似文献   

4.
While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus [e.g., nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I]. In this study, we characterize the diversity of several nuclear protein-coding genes plus both nSSU-rDNA and mitochondrial small subunit rDNA (mtSSU-rDNA) of five isolates of the ciliate morphospecies Chilodonella uncinata. Although these isolates have nearly identical nSSU-rDNA sequences, they differ by up to 8.0% in mtSSU-rDNA. Comparative analyses of all loci, including β-tubulin paralogs, indicate a lack of recombination between strains, demonstrating that the morphospecies C. uncinata consists of multiple cryptic species. Further, there is considerable variation in substitution rates among loci as some protein-coding domains are nearly identical between isolates, while others differ by up to 13.2% at the amino acid level. Combining insights on macronuclear variation among isolates, the focus of this study, with published data from the micronucleus of two of these isolates, indicates that C. uncinata lineages are able to maintain both highly divergent and highly conserved genes within a rapidly evolving germline genome.  相似文献   

5.
6.
Identifying discontinuous entities within species complexes is a major topic in systematic and evolutionary biology. Comprehensive inventories describing and identifying species rapidly and correctly before they or their habitats disappear is especially important in megadiverse regions, such as South America continent, where a large part of the biodiversity is still unknown and remains to be discovered. Species complexes may account for a substantial number of plant groups in the South American flora, and studies investigating species boundaries in such challenging groups are needed. In this context, multidisciplinary approaches are crucial to understanding the species integrity and boundaries within species complexes. Morphometrics, cytogenetics, anatomy, crossing experiments, and molecular markers have been combined in different ways to investigate species complexes and have helped depict the mechanisms underlying the origin of South American species. Here, we review the current knowledge about plant species complexes on the hyperdiverse South American continent based on a detailed examination of the relevant literature. We discuss the main findings in light of the potential evolutionary mechanisms involved in speciation and suggest future directions in terms of integrating multispecies coalescence methods with several complementary types of morphological, ecological, and geographical data in this research field.  相似文献   

7.
The metallothionein (MT) gene superfamily consists of metal-binding proteins involved in various metal detoxification and storage mechanisms. The evolution of this gene family in vertebrates has mostly been studied in mammals using sparse taxon or gene sampling. Genomic databases and available data on MT protein function and expression allow a better understanding of the evolution and functional divergence of the different MT types. We recovered 77 MT coding sequences from 20 representative vertebrates with annotated complete genomes. We found multiple MT genes, also in reptiles, which were thought to have only one MT type. Phylogenetic and synteny analyses indicate the existence of a eutherian MT1 and MT2, a tetrapod MT3, an amniote MT4, and fish MT. The optimal gene-tree/species-tree reconciliation analyses identified the best root in the fish clade. Functional analyses reveal variation in hydropathic index among protein domains, likely correlated with their distinct flexibility and metal affinity. Analyses of functional divergence identified amino acid sites correlated with functional divergence among MT types. Uncovering the number of genes and sites possibly correlated with functional divergence will help to design cost-effective MT functional and gene expression studies. This will permit further understanding of the distinct roles and specificity of these proteins and to properly target specific MT for different types of functional studies. Therefore, this work presents a critical background on the molecular evolution and functional divergence of vertebrate MTs to carry out further detailed studies on the relationship between heavy metal metabolism and tolerances among vertebrates.  相似文献   

8.
International Journal of Primatology - Primates might be particularly vulnerable to experiencing adverse effects from climate change, given their level of exposure, sensitivity to climatic...  相似文献   

9.
The nearly neutral theory attributes most nucleotide substitution and polymorphism to genetic drift acting on weakly selected mutants, and assumes that the selection coefficients for these mutants are drawn from a continuous distribution. This means that parameter estimation can require numerical integration, and this can be computationally costly and inaccurate. Furthermore, the leading parameter dependencies of important quantities can be unclear, making results difficult to understand. For some commonly used distributions of mutant effects, we show how these problems can be avoided by writing equations in terms of special functions. Series expansion then allows for their rapid calculation and, also, illuminates leading parameter dependencies. For example, we show that if mutants are gamma distributed, the neutrality index is largely independent of the effective population size. However, we also show that such results are not robust to misspecification of the functional form of distribution. Some implications of these findings are then discussed.  相似文献   

10.
In Drosophila, the availability of polytene chromosome maps and of sets of probes covering most regions of the chromosomes allows a direct comparison of the organization of the genome in different species. In this work, we report the localization, in Drosophila virilis, D. montana, and D. novamexicana, of >100 bacteriophage P1 clones containing ~65 kilobase inserts of genomic DNA from D. virilis. Each clone hybridizes with a single euchromatic site in either chromosome 1 or chromosome 3 in D. virilis. From these data, it is possible to estimate the minimum number of inversions required to transform the map positions of the probes in one species into the map positions of the same probes in a related species. The data indicate that, in the D. virilis species group, the X chromosome has up to four times the number of inversions as are observed in chromosome 3. The first photographic polytene chromosome maps for D. montana and D. novamexicana are also presented.  相似文献   

11.
Sequence data of the chloroplast gene rbcL were used to estimate the time of the well-known eastern Asian–eastern North American floristic disjunction. Sequence divergence of rbcL was examined for 22 species of 11 genera (Campsis, Caulophyllum, Cornus, Decumaria, Liriodendron, Menispermum, Mitchella, Pachysandra, Penthorum, Podophyllum, and Phryma) representing a diverse array of flowering plants occurring disjunctly in eastern Asia and eastern North America. Divergence times of putative disjunct species pairs were estimated from synonymous substitutions, using rbcL molecular clocks calibrated for Cornus. Relative rate tests were performed to assess rate constancy of rbcL evolution among lineages. Corrections of estimates of divergence times for each species pair were made based on rate differences of rbcL between Cornus and other species pairs. Results of these analyses indicate that the time of divergence of species pairs examined ranges from 12.56 ± 4.30 million years to recent (<0.31 million years), with most within the last 10 million years (in the late Miocene and Pliocene). These results suggest that the isolation of most morphologically similar disjunct species in eastern Asia and eastern North America occurred during the global climatic cooling period that took place throughout the late Tertiary and Quaternary. This estimate is closely correlated with paleontological evidence and in agreement with the hypothesis that considers the eastern Asian–eastern North American floristic disjunction to be the result of the range restriction of a once more or less continuously distributed mixed mesophytic forest of the Northern Hemisphere that occurred during the late Tertiary and Quaternary. This implies that in most taxa the disjunction may have resulted from vicariance events. However, long-distance dispersal may explain the disjunct distribution of taxa with low divergence, such as Menispermum.  相似文献   

12.
Sixteen Fusarium species were recovered from 52 asparagus commercial fields, representing all major ecological (edaphic and climatic) area of asparagus production in the province of Québec, eastern Canada. This study extends our understanding of the geographic range of these species. It also provides climatological and edaphic properties linked to community changes and adaptations. Fusarium oxysporum and F. proliferatum were omnipresent and abundant in all five ecological area under study, whereas F. redolens was less frequently found. Species of Fusarium that produce carmine red pigmentation on potato dextrose agar, i.e., F. acuminatum, F. avenaceum, etc., were common at the northern limit of asparagus production. Abundance of red Fusarium species corresponded with a low isolation frequency of F. proliferatum. Nevertheless, F. proliferatum had a high recovery rate throughout Québec asparagus growing areas, under climatic conditions as cold as those of northern Europe where this species is uncommon in asparagus fields. In the light of these results, redefinition of the geographical distribution of F. proliferatum in asparagus fields is proposed. Intraspecific molecular differences in F. proliferatum and F. oxysporum were detected in the EF-1 alpha sequences and compared with well-characterized strains of North America.  相似文献   

13.
Ayoub NA  Riechert SE 《Molecular ecology》2004,13(11):3453-3465
The influence of historical climatic vs. geological changes on species diversification patterns was investigated in a widely distributed North American desert spider, Agelenopsis aperta (Araneae: Agelenidae), with particular reference to Pleistocene glacial cycles and earlier patterns of mountain building. Levels of sequence divergence obtained from the mitochondrial gene, cytochrome oxidase I, dated to the Pleistocene, eliminating Rocky Mountain orogeny as a cause of diversification, as orogeny ended 4 million years ago. The results of phylogenetic and network analyses showed the presence of three geographically defined clades, which were consistent with the presence of at least three glacial refugia: (i) east of the Rocky Mountains; (ii) between the Rocky Mountains and Sierra Nevadas; and (iii) west of the Sierra Nevadas. In addition, populations within the Rocky Mountains exhibited significantly lower genetic diversity than populations east of the Rocky Mountains and the haplotypes found within the Rockies were a subset of eastern haplotypes. These patterns suggest that a post-Pleistocene range expansion occurred out of an eastern glacial refugium into the Rocky Mountains. Examination of phylogeographical studies of other North American desert taxa indicated that mountain building explained diversification patterns more effectively for some taxa but Pleistocene climate change was more important for others, including A. aperta.  相似文献   

14.
Fossil, archaeological, and morphometric data suggest that indigenous red foxes in North America were derived from vicariance in two disjunct refugia during the last glaciation: one in Beringia and one in the contiguous USA. To test this hypothesis, we conducted a phylogeographical analysis of the North American red fox within its presettlement range. We sequenced portions of the mitochondrial cytochrome b (354 bp) gene and D-loop (342 bp) from 220 historical red fox specimens. Phylogenetic analysis of the cytochrome b gene produced two clades that diverged c . 400 000 years before present ( bp ): a Holarctic and a Nearctic clade. D-loop analyses of the Nearctic clade indicated three distinct subclades (≥ 99% Bayesian posterior probability); two that were more recently derived (rho estimate c . 20 000 bp ) and were restricted to the southwestern mountains and the eastern portion of North America, and one that was older (rho estimate c . 45 000 bp ) and more widespread in North America. Populations that migrated north from the southern refugium following deglaciation were derived from the colonization of North America during or prior to the Illinoian glaciation (300 000–130 000 bp ), whereas populations that migrated south from the northern refugium represent a more recent colonization event during the Wisconsin glaciation (100 000–10 000 bp ). Our findings indicate that Nearctic clade red foxes are phylogenetically distinct from their Holarctic counterparts, and reflect long-term isolation in two disjunct forest refugia during the Pleistocene. The montane lineage, which includes endangered populations, may be ecologically and evolutionarily distinct.  相似文献   

15.
H. Shibata  T. Yamazaki 《Genetics》1995,141(1):223-236
From the analysis of restriction maps of the Amy region in eight sibling species belonging to the Drosophila melanogaster species subgroup, we herein show that the patterns of duplication of the Amy gene are almost the same in all species. This indicates that duplication occurred before speciation within this species subgroup. From the nucleotide sequence data, we show a strong within-species similarity between the duplicated loci in the Amy coding region. This is in contrast to a strong similarity in the 5' and 3' flanking regions within each locus (proximal or distal) throughout the species subgroup. This means that concerted evolution occurred only in the Amy coding region and that differentiated evolution between the duplication occurred in the flanking regions. Moreover, when comparing the species, we also found a significant excess of nonsynonymous substitutions. In particular, all the fixed substitutions specific to D. erecta were found to be nonsynonymous. We thus conclude that adaptive protein evolution occurred in the lineage of D. erecta that is a ``specialist' species for host plants and probably also occurs in the process of speciation in general.  相似文献   

16.
J. H. Nadeau  D. Sankoff 《Genetics》1997,147(3):1259-1266
Duplicated genes are an important source of new protein functions and novel developmental and physiological pathways. Whereas most models for fate of duplicated genes show that they tend to be rapidly lost, models for pathway evolution suggest that many duplicated genes rapidly acquire novel functions. Little empirical evidence is available, however, for the relative rates of gene loss vs. divergence to help resolve these contradictory expectations. Gene families resulting from genome duplications provide an opportunity to address this apparent contradiction. With genome duplication, the number of duplicated genes in a gene family is at most 2(n), where n is the number of duplications. The size of each gene family, e.g., 1, 2, 3, . . . , 2(n), reflects the patterns of gene loss vs. functional divergence after duplication. We focused on gene families in humans and mice that arose from genome duplications in early vertebrate evolution and we analyzed the frequency distribution of gene family size, i.e., the number of families with two, three or four members. All the models that we evaluated showed that duplicated genes are almost as likely to acquire a new and essential function as to be lost through acquisition of mutations that compromise protein function. An explanation for the unexpectedly high rate of functional divergence is that duplication allows genes to accumulate more neutral than disadvantageous mutations, thereby providing more opportunities to acquire diversified functions and pathways.  相似文献   

17.
The sturgeon subfamily Scaphirhynchinae contains two genera of obligate freshwater sturgeon: Scaphirhynchus and Pseudoscaphirhynchus, from North America and Central Asia, respectively. Both genera contain morphologically variable species. A novel data set containing multiple individuals representing four diagnosable morphological variants for two species of Pseudoscaphirhynchus, P. hermanni and P. kaufmanni, was generated. These data were used to test taxonomic hypotheses of monophyly for the subfamily Scaphirhynchinae, monophyly of both Scaphirhynchus and Pseudoscaphirhynchus, monophyly of P. hermanni and P. kaufmanni, and monophyly of the recognized morphological variants. Monophyly of the subfamily Scaphirhynchinae is consistently rejected by all phylogenetic reconstruction methodologies with the molecular character set while monophyly of both river sturgeon genera is robustly supported. The molecular data set also rejects hypotheses of monophyly for sampled species of Pseudoscaphirhynchus as well as monophyly for the recognized intraspecific morphological variants. Interestingly both Scaphirhynchus and Pseudoscaphirhynchus demonstrate the same general pattern in reconstructed topologies; a lack of phylogenetic structure in the clade with respect to recognized diversity. Despite rejection of monophyly for the subfamily Scaphirhynchinae with molecular data, reconstructed hypotheses from morphological character sets consistently support monophyly for this subfamily. Disparities among the data sets, as well as reasons for rejection of monophyly for Scaphirhynchinae and species of Scaphirhynchus and Pseudoscaphirhynchus with molecular characters are examined and a decreased rate of molecular evolution is found to be most consistent with the data.  相似文献   

18.
A higher rate of molecular evolution in rodents than in primates at synonymous sites and, to a lesser extent, at amino acid replacement sites has been reported previously for most nuclear genes examined. Thus in these genes the average ratio of amino acid replacement to synonymous substitution rates in rodents is lower than in primates, an observation at odds with the neutral model of molecular evolution. Under Ohta's mildly deleterious model of molecular evolution, these observations are seen as the consequence of the combined effects of a shorter generation time (driving a higher mutation rate) and a larger effective population size (resulting in more effective selection against mildly deleterious mutations) in rodents. The present study reports the results of a maximum-likelihood analysis of the ratio of amino acid replacements to synonymous substitutions for genes encoded in mitochondrial DNA (mtDNA) in these two lineages. A similar pattern is observed: in rodents this ratio is significantly lower than in primates, again consistent only with the mildly deleterious model. Interestingly the lineage-specific difference is much more pronounced in mtDNA-encoded than in nuclear-encoded proteins, an observation which is shown to run counter to expectation under Ohta's model. Finally, accepting certain fossil divergence dates, the lineage-specific difference in amino acid replacement-to-synonymous substitution ratio in mtDNA can be partitioned and is found to be entirely the consequence of a higher mutation rate in rodents. This conclusion is consistent with a replication-dependent model of mutation in mtDNA. Received: 24 September 1999 / Accepted: 18 September 2000  相似文献   

19.
Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California’s role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested.  相似文献   

20.
The timing of origin of modern North American bird species in relation to Pleistocene glaciations has long been the topic of significant discussion and disagreement. Recently, Klicka and Zink (1997) and Avise and Walker (1998) enlivened this debate by using calibrated molecular distance values to estimate timing of speciations. Here we use new molecular studies to test their conclusions. Molecular distance values for 39 pairs of proven sister species, 27 of which are based on new data, alter the currently perceived pattern that avian species splits occurred mainly in the Pliocene and early-mid-Pleistocene. Mitochondrial DNA divergence values for this set of taxa showed a skewed distribution pointing toward relatively young speciation times, in contrast to the pattern presented by Klicka and Zink (1997) for 35 sister plus non-sister species pairs. Our pattern was not significantly different from that of Avise and Walker (1998) for "intraspecific phylogroups," some of which are species. We conclude that the entire Pleistocene, including the last two glacial cycles (<250,000 years ago), was important in speciations of modern North American birds. A substantial number of speciations were both initiated and completed in the last 250,000 years. Simultaneously, many taxa began to diverge in the Pleistocene but their speciations are not yet complete (per Avise and Walker 1998). The suggestion that durations of speciations average two million years is probably a substantial overestimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号